Directional Order Tracking in
Rotating Machines

This paper describes a computationally simple method to isolate transient vibration from
rotating components whose frequency is tightly linked to rotation and to modes of vibra-
tion. The results can be viewed as an enhancement of computed order tracking or ampli-
tude demodulation of multiple crossing frequency terms. By measuring the response with
an array of sensors, one can compute the relative, instantaneous phase between different
sensors and thus obtain information about the spatial behavior of different components
with different wavelengths, frequencies, and traveling directions. An array of sensors
would thus exploit spatial information to separate different vibration modes and thus
gain deeper insight into the dynamical behavior. The proposed method is suitable for
whirling shafts and rotating disk-like structures. It is computationally simple and fast
while providing better separation of components than single sensor based approaches, in
particular when ordinary methods fail to separate close frequencies. It is demonstrated
that through the exploitation of cyclic symmetry of rotating structures and the angular
periodicity of the vibration modes, the spectral contents of different modes can be sepa-
rated. Simulated and measured data demonstrate the merits of the proposed algorithm.
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1 Introduction

Rotating machines often exhibit transient vibrations whose fre-
quency spectrum changes with speed of rotation. The most domi-
nant components are often synchronous to the speed of rotation
and its integral multiplications. These components are called
engine-orders, and the task of isolating individual components is
called order-tracking or now, with the advent of digital computa-
tions, “computed order-tracking.” The extraction of engine-orders
helps to isolate the source for excessive vibrations thus providing
a focused diagnostic instrument. Integer or fractional multiples of
rotation speed appear in faulty bearings, gears, an unbalanced
shaft, or under parametric vibrations of rotating devices [1]. Mis-
tuning, i.e., small differences between the jet-engine blades prop-
erties, can bring about large localized vibrations characterized by
unique temporal and spatial behavior [2,3]. The current paper
enhances order tracking in the case of whirling shafts and rotating
disk-like structures by processing data coming from several sen-
sors simultaneously thus putting more emphasis on the true physi-
cal behavior of the system rather than relying only on the apparent
frequencies. By distributing a number of sensors on the vibrating
structure circumferentially, richer information than what a single
sensor provides is gained. The spatial deployment provides infor-
mation about the relative phase between the measured locations
thus enabling the separation of otherwise overlapping variable-
frequency components. The separation procedure can isolate com-
ponents according to the direction the vibration waves propagate
[4-6] and according to their spatial wavelength in addition to sep-
arating different frequencies. The proposed method is computa-
tionally simple and robust.

Rotating machine vibrations are often the local manifestation of
circumferentially traveling stress waves excited by the interaction
between stationary and rotating parts. Different waves may have
close apparent frequencies, despite being excited by different
physical modes. Different components may have crossing fre-
quency terms [5] that cause artificial modulations in standard
order-tracking procedures [7] due to the limited resolution and the

Contributed by the Design Engineering Division of ASME for publication in the
JOURNAL OF VIBRATION AND AcousTics. Manuscript received September 3, 2012; final
manuscript received March 11, 2013; published online June 19, 2013. Assoc. Editor:
Philippe Velex.

Journal of Vibration and Acoustics

Copyright © 2013 by ASME

inherent ambiguity. The proposed approach can separate close
and crossing frequency terms accurately, as long as they belong to
different types of traveling waves [8]. Furthermore, the proposed
method exploits the phase information to project measured vibra-
tions onto rotating and body-fixed coordinates in transient condi-
tions thus shedding more light on the true nature of the elastic
deformations and stress levels and on mistuning [2,3]. Having
separated the engine orders, these can be subtracted from the
measured response to expose features hidden underneath these
components thus enhancing the resolution of the analysis.

Computed order tracking methods have recently regained popu-
larity with the advent of inexpensive digital signal processors and
suitable numerical procedures [9-11]. Tracking signal compo-
nents having frequencies that are linearly dependent upon the
speed of rotation provides a simplified insight into otherwise com-
plex response signals. Vibrations in rotating machines stem
chiefly from rotation itself [6,12—17]; therefore, tracking speed-
dependent signal components may shed light on the source of
vibration. Furthermore, order tracking enables technical staff to
monitor the health of a machine [1,18] with little knowledge in
signal processing and rotor dynamics.

Computed order tracking, in its basic form, is now an essential
part of many vibration analysis packages and measurement sys-
tems. Forward and backward whirling of shafts has been treated
extensively in the past [4,7], and the information provided by this
separation is now clearly understood. Still the whirl sense infor-
mation is seldom used in practice, and it is suggested that direc-
tional order tracking can simplify the interpretation of shaft whirl
sense and its implications.

The evolution of amplitude with speed and frequency has been
treated in the past with a signal processing tool called Zmod [19]
or by computing the time-frequency distribution [20] of measured
signals. The term Zmod has historical roots in the aero-engine
industry because it used the z-axis rear connector on old oscillo-
scopes. This ancient technique has been replaced nowadays by
methods providing similar information via digital signal process-
ing approaches. Digital signal processing software, mostly
employing the discrete Fourier transform (DFT), can produce
waterfall display having the ability to separate forward and back-
ward whirling shaft motions [7]. Expanding these ideas for the
separation of multiple wavelengths, commonly found in disks,
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results in the Zmod-like time-frequency information (see Ref.
[19]) with the ability to separate different modes according to the
number of modal diameters (i.e., wavelength) [16] and where neg-
ative frequencies symbolize waves traveling in an opposite direc-
tion to the disk rotation speed [6,21]. Unfortunately, the methods
described in Refs. [5,19] provide averaged, frequency domain
data, and vibration levels during rapid transients can thus be
underestimated. Clearly, all the available methods to compute
time-frequency distributions, whether based on the discrete Fou-
rier transform, Wigner—Ville distribution, or wavelet decomposi-
tion (e.g., Ref. [19]), suffer from limited resolution.

A recent paper [22] proposed an approach circumventing the aver-
aging processes associated with frequency domain methods [7] by
performing the wave decomposition in the time domain. This is
achieved at the cost of a somewhat complicated, dual-step procedure
that isolates the time domain components associated with the individ-
ual waves traveling on the structure circumferentially.

Order tracking, under suitable conditions, can provide accurate
estimates of the individual amplitudes without producing an over-
whelming amount of information [9,10].

Most set-ups contain two sensors per shaft section, but without a
suitable procedure this seemingly redundant setup is seldom
exploited in order tracking. While two sensors are sufficient for shaft
dynamics [5,16], more sensors are needed to analyze rotating disk
analysis [19,22-24]. The importance of separating forward and back-
ward shaft whirl motions has been well established in the past (e.g.
Refs. [4,6]) while disk vibrating and rotating disk dynamics require a
more elaborate approach (e.g. Refs. [25-27]) or larger number of
sensors to decompose the vibrations, as has been shown before
[19,22]. The present problem is similar to what was presented in Ref.
[28] but with an extension to multiple wavelength as in Ref. [22].

This paper proposes a compromise between simple spectro-
grams or waterfall diagrams [5,16,19], standard order tracking [5,
9-11,29], and elaborate computationally intensive time-domain
methods [22].

Section 1 presents the motivation and provides some back-
ground material. The mathematical background and derivation of
the proposed method from analytical and numerical perspectives
are outlined in Sec. 2. The same part describes a numerical imple-
mentation of the method, and finally Sec. 3 demonstrates the pro-
posed method on simulated and experimentally obtained data. The
paper concludes with a brief discussion and summary.

2 Directional Order Tracking Algorithm and
Implementation
Consider a rotating part undergoing dynamic deformations, such

as illustrated in Fig. 1. The proposed separation method relies on the
ability to simultaneously analyze data measured from several

Fig. 1
continuous (circle) and discrete sensors (arrows)
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Fig. 2 Time response of s;(f) containing several components
according to Eq. (20)

sensors. Normally the signal measured by a single sensor is analyzed,
and the need for a method decomposing the individual parts of the
signal is exemplified by a sample signal shown in Fig. 2.

The effect of rotation as measured on the system depicted in
Fig. 3 is clearly visible in Fig. 4 where the measured frequencies
change with speed. Still, there are overlapping lines caused by dif-
ferent mechanisms and a slight indication of flutter beginning at
50 s (indicated by an erratic change of frequency with time). The
color-coded figure shows that several components, probably
resulting from different modes of vibration and different sources,
overlap with no real ability to isolate them.

Clearly, the lack of spectral resolution [1,30] makes it rather
difficult to find the cause for high vibrations in the low frequency
region. With an array of sensors such as shown in Figs. 1 and 2,
better separation can be achieved as shown below. The compli-
cated plot in Fig. 4 is often replaced by tracking certain frequency
lines, i.e., engine orders (EO). Indeed, in the case of disk-like
vibrations, EO are not easily separated as they tend to cross sev-
eral frequency lines (see Fig. 4) resulting from natural modes of
vibration. The proposed approach attempts to combine the easy-
to-decipher EO plots with two additional levels of separations,
namely separation according to specific modes of vibration and
according to the direction of rotation.

2.1 Spatial Decomposition of Orders—Demodulation.
Vibrations measured on rotating structures during acceleration can
be rather complex in the time and in the frequency domains. In

(b) (©

Rotating disk with a circular array of sensors, engine fan model with illustrated array of sensors, and a bladed disk with
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Fig. 4 A spectrogram computed with a single sensor during
acceleration

the time domain, modes of vibration are excited simultaneously to
gives rise to multifrequency, nonstationary response signals. In
the frequency domain, amplitudes and frequencies are smeared
due to the nonstationary nature of the phenomena. For this reason,
methods capable of describing evolutionary spatial contents are
often adopted [31,32]. Unfortunately, speed-frequency-amplitude
maps or time-frequency distributions [5,20] can contain densely
populated, often overlapping components and, therefore, the abil-
ity to understand the extent and the physical significance of indi-
vidual components can be difficult. An effective approach to
isolate single components according to their instantaneous fre-
quency uses order tracking [9,10,33]

Instantaneous
Phase

sensor

5@

Sine Sine
tracking == tracking
In phase In quad
ip,(t) iq, (1)

a (1) +1b (?)

v

@

In this section, the analytical and mathematical background
describing how any order tracking method can be enhanced to further
separate close and crossing components effectively by exploiting the
physical behavior of rotating structures is explained.

A sensor placed at a fixed angular location denoted by 0; pro-
duces a signal described by

N

5i(0) = Y Ay (1) sin (1) + By (1) cos o (1) +15(1) (1)
k=1

The signal is modeled by (slowly or low-pass) time varying ampli-
tudes Ay (?), By(t) and by the instantaneous phases ¢(#). The
residual part () contains frequencies not included in this model
and random nondeterministic components. Every modeled com-
ponent has a time-varying frequency defined by [34]

P (1)
onlr) =2 @)
Here ¢,(f) is the instantaneous phase of the signal, and wy(?)
represents the instantaneous frequency of a specific narrow-band,
isolated component of the dynamics.

In some cases, the frequency of the component is an integer
multiple of rotation speed, i.e., wi(f) =nQ(f) where n=1, 2, 3,....
In these cases, ¢,(f) represents the rotational phase and the integer
multiples are referred to as engine orders. Transmissions and
gears often give rise to a noninteger multiplier n. Rotating
machines exhibit speed-dependent natural frequencies [6,14,15],
and a certain mode of vibration can thus exhibit speed and, there-
fore, time dependent behavior. The instantaneous frequency, in
these cases, is linked to a certain (or several) mode(s) of vibration
and its dependence on the speed of rotation can be found by
detailed analytical or numerical modeling [6,35], or simply by
approximation and curve-fitting data generated by speed-
frequency diagrams [5,7,36].

Order tracking isolates the amplitudes Ay(r), Byi(r) related to
the signal component with phase ¢(f) and frequency ¢.(¢). In
disk-like structures, the amplitudes emanate from several modes
of vibration, some of which have different numbers of modal
diameters, these different modes are represented by the subscript j
in Eq. (1) but all share the same instantaneous phase.

A simplified diagrammatic illustration of demodulation and fre-
quency tracking is depicted in Fig. 5. The process of obtaining the
slowly varying amplitudes of a faster sinusoidal term is called
demodulation [37] and is now often realized by adaptive digital
signal processing techniques [9—11,33].

sin

< Sk )

2sin @, (1)
s (H)—
2¢c0s9,,(1)
G0 (1) + (1)

(b)

Fig. 5 Basic quadrature demodulation or order tracking of the mth engine order from the nth

sensor—graphical representation
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2.2 Measured Signals and Rotationally Traveling Waves
of Cyclic Structures. An informative description of a signal
measured from a rotating structure takes into consideration the
dynamics of cyclically symmetric structures [38,39]. Owing to the
cyclic symmetry of most rotating objects, circumferentially travel-
ing waves arise naturally. Consider a typical rotating element, as
shown in Fig. 1, undergoing elastic vibrations.

A typical bladed disk is shown in Fig. 1 where a hypothetical
circumferentially continuous sensor measuring the response indi-
cated by s(0, 1) is placed at a fixed radius in Figs. 1 and 2. A more
realistic array of equispaced point-sensors is illustrated by the
discrete sensors (arrows) drawn at the same radius. In order to
analyze the circumferential separation, a continuous sensor that
would measure a signal composed of the contribution of many
modes, is assumed. Some modes of vibration are separated here
according to their number of nodal diameters (ND) [40,41]. Hav-
ing assumed a continuously distributed sensor, the measurement
at any angle can be expressed mathematical as

5(0,1) = ay(t) cosn + b, (1) sinnd, 0 €[0,2n]  (3)
n=0

Rotating elements contain little damping, and therefore, the time
varying amplitudes are composed of several amplitude-modulated
narrow-band processes. These processes participate in the individ-
ual amplitudes of the nth nodal diameter modes, according to

an ([) AZ}I(Z) COS Py (t) + Ain(t) sin (p/{n([)

M= -

“

ba(r) = By, (1) c0s g, (1) + B, (1) sin @, (1)

~
I

1
The functions A (1),A, (t), BS, (t),and B}, (f) are low-pass and
(@i (1) is the instantaneous frequency of the kth component, which

is associated with the n-ND modes. Substituting Eq. (4) in Eq. (3),
one obtains

sO.0=)_ (ZAkn ) €08 @y (1) + A3, (1) sin g, (1 )) cosnf -

n=0

(om0

. (0) cos @, ( )+l§‘,in(t)singok,,(t)> sinn0
=1

(&)

Employing trigonometric identities, Eq. (5) can be transformed
into a traveling-waves representation

© N
s(0.0 =7 Z (A% (1) + B, (1)) cos(¢y (1) — n0)

( Ain( )) Sin((plm(l)
+ (AL, (1) = B}, (1)) cos(, (1) + n)
(

+ (B, (1) + A, (1)) sin(y, (1) + n0) (6)

—n9)+-~~

A concise representation of Eq. (6) uses complex or phasor
notation

oo N
=R Z ZA i(ppa( (g (1)+10) 7

n=0 k=1

+Akn( )

Now, separating the amplitudes of the forward and backward trav-
eling waves [19], one can write

061004-4 / Vol. 135, DECEMBER 2013

[l

1>
R = N —

A1)

A1)

7A~in(t))>7
_Ein([))_l(gin()+Bkiz( ))) ®)

((BL(0) + A5, (0) +i(B}, ()

(4%

The functions A} (),A,(f) are the slowly varying (complex)
amplitudes (i.e., low-pass [34]) of the corotating (forward) and
counter rotating (backward) waves, respectively. The instantane-
ous frequencies ¢, (¢) describe general time-dependent (smoothly
varying) functions that could trace any smooth curve in the time-
frequency domain; see Ref. [42] for discussion on time-varying
frequencies.

2.3 Tracking Engine Orders With Continuous and Dis-
cretely Placed Sensors. An array of N sensors is deployed
around the rotating and vibrating disk-like structure, as shown in
Figs. 1 and 2. Consider isolating the components related to phase
@10 (1) by means of co/quad demodulation. Rewriting Eq. (5) in
co/quad form, one obtains

o0

s0.0=3" (A;On(t) cos n0 + BS, (1) sin no) €08 Py () + -

n=0
+ (A‘fmn(t) cosnl + B (1) sin n9> sin ¢y, (¢) 9

By employing standard demodulation to obtain the in-phase part
of the sensor, one has

[o9]

ipi, (0,1) Z (Ai L(1) cosnb + BZM (¢) sin n0) (10)
n=0
and the in-quadrature is
i (0,6) = (Akon( )cos n0 + By, (1 )sinne) (11)
n=0

Equations (10) and (11) combine the amplitudes of all the disk
modes and are the result of standard order tracking procedures,
whose basic form is illustrated in Fig. 4. Making use of the cyclic
nature of the structure, one can apply a spatial Fourier transform
to obtain

21 21
A;q,n() %L ipx, (0,1) cosnOdo, B:ZM(I)=%L ipk, (0,1) sinnfdo

12)

21

5 1 27 5 1
A',‘;nn(t):;L iqx, (0,) cosn0do, B‘,ﬁnn(t):%L iqk, (0,t) sinn0d0

(13)
Resortmg to an equispaced array of sensors with
0= ﬂ ,p=0,1...N — 1, one can obtain the individual compo-

nents via DFT (assuming there is no spatial leakage, [1])
Aiono(t) = ]%Nil (ipkn,,(t) cos 1 2%) ,

BZOHO( ) = % (ipkup(t) sin ng 2%)

A;;Uno(t) = ]%Nil (iqkup(t) cos g 2%) ,

(iqko,,(t) sin g 2%) (14)
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Fig. 6 Graphical representation of the multidimensional, directional order-tracking procedure

Finally, one can employ Eq. (8) to estimate the forward and back-
ward parts of the EO associated with ¢, (#). The entire procedure
resulting from the proposed mathematical development is illus-
trated graphically in Fig. 6. Figure 6 is realized by implementing
the scalar demodulation of Fig. 5 followed by wavelength separa-
tion with Eq. (14). The directional information is found by substi-
tuting the outcome of Eq. (14) in Eq. (8).

2.4 Moving Coordinate Systems, Apparent and Shifted
Frequencies. It is often desired to relate the measurement taken
by an array of sensors at one coordinate system (CS) to a system
rotating with a relative phase angle of W(¢). It is assumed that
rotation is in the positive 0 direction; thus, denoting ¢ as a fixed
angle measured relative to the rotating CS, it is straightforward to
relate these angles via [43]

¢ =0+Y(r) (15)
When transforming between stationary and body-fixed coordi-
nates, the relative angle is computed with the instantaneous rota-
tion speed Q(¢) according to

t

Y(r) = J Q(1)dr (16)

0
Substituting Eq. (15) in Eq. (7), one can obtain an expression for

the signal a fictitious sensor residing at (ro, ¢) in the rotating CS
would measure

ps(p, 1) = 5(0 + W(1),1)

=R

N

N
Z A;rn ([)ei((hn*n‘l‘)efind) + A];1 ([)ei(q”*”Jr"\P)ei"d)
k=1

Il
o

n

a7

The apparent frequencies, as evident from Eq. (17), change for
every EO (or phase component), when transformed to the body-
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fixed CS. Indeed it depends on the direction and on the ND of the
individual component, via

W, = Ga(1) = nQ1), @, = () + Q) (18)
One can relate the engine orders measured in stationary coordi-
nates to the frequencies a sensor would measure in body-fixed
coordinates, by using the fact that EO of different ND travel at
different angular speeds (cf. Eq. (18)). The specific number of ND
does not change for the individual components; thus one can
make use of Egs. (17) and (18) to estimate what a material point
is actually experiencing in body-fixed coordinates.

Having isolated A}, (1), Ay, () as shown above, it is possible to
transform individual components to body-fixed CS with

AL (1)) AL (1)elntY) (19)
Although the EO computed by Eq. (14) are low-pass (slow), in the
body CS, the apparent frequencies of these components do change
as will be demonstrated later on.

The entire procedure is based on the scalar demodulation stage
as represented by the transition from Eq. (9) to Eqgs. (10) and (11)
according to any scalar order-tracking approach (e.g., Fig. 5). This
process, unlike the subsequent stages, involves some approxima-
tion and is based on some assumptions about the signal band-
width, and it involves nonlinear or nonstationary filtering.

3 Numerical and Experimental Examples

This section presents simulated and experimentally based case-
studies of the proposed method. The first example includes syn-
thetic time-varying signals with forward and backward traveling
waves having different wavelengths. These components intersect
in the time-frequency domain and, therefore, ordinary order-
tracking could fail, whereas the proposed method shows better
separation of the individual components. Experimental results
begin with shaft vibration decomposition, and later rotating disk
vibrations are analyzed in stationary and rotating coordinates.
Finally, a simulated cyclically-symmetric structure with different
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levels of mistuning is numerically simulated to discuss the use of
the proposed approach in quantifying imperfections.

3.1 Simulated Example. Consider a rotating and vibrating
disk whose dynamics are measured by N =7 equispaced sensors
as shown in Figs. 1 and 2. The simulated measurements for each
one of the sensors are computed via

4

(1) cos(o,(t) — n,0),
;A (1) cos (o, (1) ) 0)

A
si(1) = 5(0,0)lp—amyy7: kK =0...6

5(0,1)

The instantaneous phase of each of the four components, repre-
senting either run-up or run-down of the rotating system, obeys

@, (1) = ot + 9,2+, r =1...4 @1)
and the parameters determining the instantaneous amplitude and
phase are given in Table 1.

The simulated response at one of the sensors is shown in Fig. 2.
Clearly, the signal, being composed of several nonsynchronous
and nonstationary components, looks rather erratic. One can
notice from the time-frequency map of this signal (see Fig. 7) and
from Table 1 that several modes participate in the same compo-
nent and several orders intersect in Fig. 7. The example attempts
to isolate all the components related to a single phase term ¢, (f).
Initially order tracking is applied to a single sensor and later to all
sensors simultaneously. The results are shown in Fig. 8, and sev-
eral conclusions can be made. With a single sensor (indicated by
s1), misleading results were obtained. The multisensor clearly iso-
lates the instantaneous amplitudes associated with n=—-3, 42
nodal diameters quite well. As for the other terms, small spikes in
amplitudes arise whenever term crossing occurs, but these spikes,
unlike the true terms, are very sensitive to the nonlinear demodu-
lation procedure and can thus be identified by altering the band-
width of the demodulation process (as defined in Refs. [9,11]).
Having identified the true components, one can subtract them
from the original signals and proceed with the component identifi-
cation by “peeling” component by component. An example for
this procedure will be shown for real data later on.

3.2 Experiments—Rotating Shaft and Disk. Shaft disk
vibrations were measured on a laboratory test-rig (see Figs. 2
and 9), and the directional decomposition is demonstrated in sev-
eral ways:

600

500

400

frequency ,,

Fig. 7 Waterfall (spectrogram) representation of the signal in
Fig. 2 and Eq. (20)
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Fig. 8 Extracted spatial vibration components along ¢(f) from
a simulated rotating disk using seven sensors. Also shown is
the attempt to track this order with a single sensor, s;(f) (shifted
for clarity—continuous line) and the spatially decomposed
components with nodal diameters in the range (-3 - - - +3).

(i) asimple forward and backward decomposition of the shaft
whirl in the time domain making use of two sensors meas-
uring the shaft bending

(i) decomposition of the various disk modes with an array of

N =8 sensors spread at equispaced angles along a flexible

disk and transformed to the body-fixed coordinates a mate-

rial point on the disk senses

subtracting all rotationally driven engine orders with an

array of N =4 to reveal the underlying dynamics

(iii)

The experimental system, shown in Fig. 9 consisted of a 20 mm
diameter flexible shaft, which was 1.0 m long. The shaft was
mounted on two self-aligning ball-bearings, and it was driven by a
20 Nm rated AC brushless motor capable of running up to 4500
RPM. A flexible disk was mounted on the other end of the shaft.
In the present test, an active magnetic bearing produced a small,
band limited random force to enrich the measurements and simu-
late the effect of turbulence in real jet-engines. Not shown in Fig.
9 is the sensor array measuring the disk vibration in a similar
arrangement to Fig. 2.

3.2.1 Separating the Direction of Wave Travel—A Whirling
Shaft. Normally, for a rotating shaft, two sensors are placed at
90 deg. Indeed, the system in Fig. 9 has two sensors sq(?), s1(¢) at
0 deg and 90 deg, respectively. In order to apply Eq. (14), one can
make use of the fact that

Sz(l) = —S()(t)7 S3(l’) = —S1(f) 22)
(see Fig. 7 and Appendices C and D in Ref. [36]) thus producing an
effective array containing N =4 sensors displaced 90 deg apart.

The shaft was accelerated beyond the first critical speed, and
the instantaneous phase of rotation was recorded in addition to

s0(0), s1(2).
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Fig. 9 Laboratory system showing rotating disk, two shaft
sensors
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Fig. 10 Forward and backward components of order 1,
¢(t) =Q(t) for the vibrating shaft during speed change. Meas-
ured on the system in Fig. 9.
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Fig. 11 Complex amplitudes (see Fig. 10) of the forward and

backward whirl along the first engine-order (EO-1, ¢(t) = Q(1))
measured with two sensors on the system in Fig. 9 during rota-
tion speed change

Substitution of Eq. (22) in Eq. (14) shows that
Ag(1) = A5, (1) = 0 (see also Ref. [19]). We are thus left with the
components with k=1 nodal diameters, i.e., A}, (¢). The ampli-
tude and complex versions of the instantaneous amplitudes are
computed with Eq. (14) for the first EO, i.e., ¢; (¥) =Q¢, with Q
being the instantaneous rotation speed.
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measured on the system in Fig. 9

3 e ! 3 A ! :

orders

1.5 2 25 3
samples % 10*

Fig. 13 Decomposed spatial components of EO-1 vibrations
measured on a rotating disk transformed to body-fixed
coordinates

It is surprising to note in Fig. 10 that the backward whirl motion
(-1) has larger amplitude than the forward term (4-1) despite
being excited by a forward rotating unbalance. This fact is impor-
tant because the forward term presents nearly static deformation
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Fig. 14 Subtracting engine orders: original Fig. 4, bottom:
subtracted orders (combined), top: resulting spectrogram after
subtracting EO-1.. 4, inertial coordinates

in body-fixed coordinates while the backward term oscillates
twice per revolution (e.g., see Ref. [14]). Coquad or complex
demodulation produces complex amplitudes and indeed, Fig. 11
traces the real versus imaginary amplitudes (or orders) showing
that phase changes rapidly for the forward term (+1), while being
rather stationary around the critical speed for the (—1) term.

3.2.2  Decomposition in Inertial Coordinates. The proposed
decomposition was applied to an array of N = 8 stationary sensors
for tracking, ¢,(f) =Qt. The results shown in Fig. 12 trace the
amplitudes for different wavelengths versus time measured. The
result shows that in inertial coordinates, the (+1,-1,-2) terms
have meaningful amplitudes where the (41) shows no special
increase near the critical speed, while (—1) shows a large resonant
amplitude when crossing the backward natural frequency. Clearly,
without the decomposition, it is impossible to separate the static
(+1) component from the oscillating (—1) part.

3.2.3 Transforming the Decomposition Into Body-Fixed
Coordinates. One can produce simulated time signals for ficti-
tious sensors glued to the disk with Eq. (19). Indeed, the original
time functions as obtained in inertial coordinates are now trans-
formed to yield Fig. 13. In body fixed coordinates the (4+1) com-
ponent along ¢,(f)=Q¢ is nearly constant. This term is mostly
affected by the disk’s initial wobbliness, which flattens with
speed (see Fig. 12). The backward going components (—1,-2)
seem more meaningful, and the true alteration of strain and stress
can be computed with this newly computed data. It should be
emphasized that the decomposition is essential for the proposed
transformation since different wavelengths travel at different
speeds.
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Fig. 16 Time-frequency map measured on a single blade in a
direction normal to the blade while the force in Eq. (24) was
acting on the system from Fig. 15. Note the abrupt increase in
amplitude (indicated by local color changes) upon excitation of
modes by the engine-orders.

3.24 Subtracting  Selected  Orders From  Measured
Data. Certain time varying components can obscure other terms
that are hidden or masked in the time-frequency domain. In this
example, N =4 sensors were used to remove four engine orders,
ie., @,(t) =nQt,n=1...4. Being able to separate the forward
and backward traveling components, one can subtract these terms
from the original signals by creating “holes,” i.e., without affect-
ing terms having different numbers of nodal diameters or crossing
frequency terms. The time-frequency distribution of the original
signals is depicted in Fig. 4 where the influence of the EOs is
clearly visible. The first stage involved the identification of the
engine orders according to the proposed procedure and creating
suitable time functions describing the forward and backward
terms for all the nodal diameters. These terms are subsequently
removed from the original signals, and the results are shown in
Fig. 14. Clearly, the EO terms that are shown at the bottom were
removed to create Fig. 14—top and better visibility of the natural
frequency has been achieved with no holes in their description
due to the clean removal of the engine orders 1-4.

3.3 Simulation of a Mistuned Cyclically Symmetric
Structure. Rotating structures are often cyclically-symmetric
and any small deviation in the properties of individual sectors
(i.e., blades as shown in Figs. 1 and 15) can give rise to elevated
vibration levels in some configurations. It is well known that the
transition from pure axisymmetry to cyclic symmetry
“contaminates” modes having N nodal diameters with other
modes having (say) k£ ND. With perfectly identical sectors, modes
of vibration can have N*kt ND (e.g., see Ref. [39]). These

Fig. 15 A Finite element model of a mistuned structure with cyclic-symmetry. Showing one
mode under different levels of mistuning (from left to right): (i) near perfect, no mistuning, (ii)
3% blade thickness variations, and (iii) 9% blade thickness variations.

061004-8 / Vol. 135, DECEMBER 2013

Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.or g/ on 06/24/2013 Terms of Use: http://asme.or g/terms



enes_3] e 3 =--3
— < —_ 'q
—-—— _ -
B o —_— E— .3 ___01 —_ -y —_ B tm——————— | PR ——
—1 — — .
—eee2 aeee2 H 2 -
12 [{= =3 frdescoscacadorsnssncccinorsnensnsinacorens] B S U | e L S
a +1 A +1 A +1 A
2 E S
4 < < A
* 0 o e — * 0p— -— —— —— * [ e _.J‘.__._ —
A ,‘l A
1
) S N S ([ P R SR W e —— ] | S
> . A . |
.
5 ]
30 2 8 10 ) 2 8 10 -3 2 8 10
time (sec) time (sec) time (sec)
(@ () (©

Fig. 17 A single engine order at 2 x Q (2EO) decomposed into contribution of several nodal diameters in the range
ND = —3...3. The plots correspond to the systems depicted in Fig. 15 where (i) left: near perfect, no mistuning, (ii) middle: 3%
mistuning of random blade thickness variations, and (iii) right: 9% blade or random thickness variations.

structures can start their lives with near perfect cyclic-symmetry
and degenerate, due to wear, into mistuned structures exhibiting a
different dynamical behavior. In this case, the distinct spatial pat-
tern is distorted and additional wavelengths (ND) appear. The
present simulation demonstrates that spatial decomposition can be
used to detect this feature by isolating the appearance of addi-
tional ND data in the measured response.

In order to excite all the modes, a rotating force was simulated
such that it acts on the outer rim of the structure in the radial
direction. The force changes in time to simulate speed run-up

according to
0— 2
£.00,0) = exp (—10 sin? (%“t))

A single acceleration parameter, ap = 580 determines the EO lines
(see Fig. 16).

The specific selection of force distribution, which is localized
in space, excites many nodal diameters simultaneously, as evident
from Fig. 16. In order to illustrate the effect of mistuning on the
proposed method, three finite element models were constructed.
The effect of mistuning and the geometry of the structure can be
viewed in Fig. 15 where different levels of mistuning were
induced by changing the blades thickness. Observing the response
of a signal blade during run-up does not reveal any difference
between the three cases (tuned, 3% mistuning, 9% random mis-
tuning). Clearly, the type of mistuning (mass, stiffness, thickness)
and its spatial distribution affect specific modes more than others,
depending on the projection of mistuning on the spatial displace-
ment exhibited by the particular mode shape. Indeed, Fig. 5 shows
that the perfectly cyclic structure exhibits n =1 nodal diameter
circumferential variation. This fact was captured by the direc-
tional order tracking in Fig. 17. Upon crossing the natural fre-
quency of the mode shown in Fig. 15, only +/-1 ND were excited
having the same amplitudes thus indicating a standing wave in the
structure. By introducing 3% thickness variation of the blades, a
localized mode (middle plot in Fig. 15) was formed, but the +/-1
ND still prevail. Finally, the largest mistuning level shown on the
right of Figs. 15 and 17 created a highly contaminated mode with
equal amplitudes for all ND in Fig. 17. In the latter case, the mode
exhibits the motion of a single blade (right plot in Fig. 15).
Clearly, the decomposition of the response upon crossing a critical
speed of any EO shows an indication for mistuning by detecting
the increase of contaminating ND.

(23)

4 Discussion and Summary

The present paper discusses an enhanced order-tracking proce-
dure that takes into account the spatial and directional features of

Journal of Vibration and Acoustics

vibration patterns. Given the deployment of a circumferentially
equispaced array of sensors, the suggested approach produces
richer decomposition than ordinary order tracking methods. The
proposed method tracks a certain frequency or phase, which is
changing with speed and time to extract the amplitude and phase
information for several modes of vibration. With the proposed
procedure, terms that have close frequencies, overlapping and
crossing instantaneous frequencies can be effectively identified.
Being able to reconstruct the time functions of the various compo-
nents, one can selectively remove them from the original signals
and assess their role, origin, and weigh their importance on the
developing vibration. The proposed method is computationally
simple and can be implemented in real-time. With the separation
into different wavelengths or nodal diameters, stationary sensors
can be used to assess vibration levels in material or body-fixed
coordinates and thus provide a reliable measure of stress levels
and detect mistuning in cyclically symmetric structures. Mistun-
ing of cyclic structures can be identified by the appearance of con-
taminating nodal diameters in measured responses of mode-
shapes as demonstrated via simulation.

Appendix

Table 1 Coefficients of the simulated disk measured data used
in Eqgs. (20) and (21)

roon, , Vr Vr A1) comment
12 240m 40 —2.5 52432fun(ihg)  fuw(®) 2 o—|Z]
2 -3 240m —40 =25 14 12 cos() same phase as r =1
3 -1 280 —80 5 35¢ 008 close to r =2

4 1 0 157 0 1.0
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