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Abstract

An adaptive method, with which an excitation frequency is continuously varied to obtain maximal
oscillation levels, is developed. It is shown that this approach yields the best mechanical efficiency and it is
thus essential when the available input power is restricted. The method is demonstrated on a specific
apparatus, a squeeze-film levitation device, to obtain maximal levitation height of a floating object. The
proposed method uses a minimal amount of frequency dither to revive an identification process that is
otherwise singular. With this identified model, the algorithm seeks the best momentary excitation
frequency. The algorithm is validated in a simulation and on dedicated experimental apparatus.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with an adaptive excitation scheme trying to generate the largest possible
amplitude of vibration under limited input power. The sought method requires the identification
of relevant system parameters and the selection of the best excitation frequency to excite the
system with. When the vibrating system tends to vary with time, a suitable identification process
should be able to track these variations in order to maintain near-optimal performance in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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real-time. Non-linear behaviour poses an additional difficulty as such systems no longer have a
fixed-parameter linear approximation for a range of applicable amplitudes [1]. In the focus of this
paper is a squeeze-film levitation device (SFLD) (see [2] for a detailed description). The non-linear
behaviour of a compressible fluid under normal vibration yields a load-carrying average pressure.
This average pressure is proportional to the square of the surface vibration amplitude. Therefore,
the levitation apparatus is designed to create relatively large amplitudes (several micrometres) at a
specific ultrasonic frequency. In this device the excitation signal must not deviate from a narrow
frequency band, where non-contacting levitation of an object occurs. The physical limitation of
the applicable excitation frequency range restricts the amount of available information about the
system. This may render the on-line identification task extremely difficult, often nearly singular.
For non-linear systems, the commonly employed algorithms (e.g. phase-locked loop (PLL)) [3–5].
These algorithms assume a fixed phase-difference between the excitation and the response at a
resonance, may fail. It has been shown that the phase difference (between the excitation and the
response) in a SFLD, at resonance, depends on the operating conditions and cannot be used to
tune a PLL to attain maximum response as in linear electrical systems (see [2, Fig. 7]). A failure in
the identification process would make a squeeze-levitation device completely inoperable.
It is evident that the requirement to maintain an optimal mode of operation necessitates a real-

time identification scheme which is (i) sufficiently simple to be implemented in real-time, and (ii)
being robust against failure.
In a typical squeeze-film levitation system such as shown in Fig. 1, the best levitation is achieved

when operating in frequencies at which the combined device (incorporating the electromechanical
and fluid parts as shown in Fig. 1) is most compliant. One expects an optimal excitation frequency
to reside in the vicinity of one of the resonance frequencies as illustrated in Fig. 2. In order to
maintain the levitation, one is compelled to generate an excitation signal sufficiently close to a
suitable frequency at which the structural compliance is maximal. Indeed, Fig. 2 illustrates that a
small deviation from the resonance frequency can reduce the amplitude of vibration considerably
to a level where no levitation can take place.
In this work, it was chosen to fit a black-box geometric model describing the response curve

around a single resonance. This model can be viewed as a series expansion of the response around
a specific frequency. Indeed in Fig. 3 an off-line measurement of the response curves was
performed on the system appearing in Fig. 1 in the vicinity of a chosen natural frequency. This
measurement illustrates that when the excitation frequency is sufficiently close to the natural
frequency, the response curve can indeed be approximated reasonably well by a low-order
polynomial.
The proposed algorithm contains a real-time identification scheme trying to reconstruct this

changing frequency-dependent curve in real-time. Due to the fact that the response curve is steep
(low damping) off resonance, the allowed excitation frequencies are limited to a narrow band. In
order to increase the amount of available information to the curve-fitting part, the concept of
dithering is introduced. Dithering allows to statistically reduce the algorithm’s tracking error by
enriching the identification scheme [6]. The enrichment of the available data is achieved by
perturbing (dithering) the excitation frequency around the desired frequency.
As will be shown, the identification of the required model needs some additional excitation in

the form of a dither signal without which, it may fail. Dither is most commonly used to reduce the
effect of quantisation of under-sampled and re-sampled signals for audio and image-processing
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Fig. 1. Squeeze-film levitation device schematics.
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applications [7]. Dither is also used to enhance the accuracy of a radome slope estimation [8] and
to improve the missile autopilot performance [9]. None of the mentioned references provides any
quantitative or theoretical analysis of the effect of dither on the identifiability of the model.
With this model at hand, it is possible to estimate the appropriate excitation frequency needed

to maintain maximum operational amplitude, subject to electrical power limitations.
Salbu studied squeeze-film devices [10] and showed how high-frequency vibrations could be

used to levitate a floating object. In this work some simplified analysis was provided, suggesting a
physical explanation for the levitation phenomenon. Minikes and Bucher [2] have built such a
levitation device incorporating a mechanical amplifier (Horn—see Fig. 1) and developed a
numerical model coupling the mechanical and electrical parts to the fluid part. These works
concluded with a statement saying that in order to operate SFLDs in an optimal manner, a
resonance tracking algorithm should be used.
The most common resonance tracking algorithm in use is based on a PLL [11,12] that is in use

in many electronic and electrical devices. For mechanical devices, Sun et al. [3] implemented a
PLL-based scheme for MEMS devices where sufficient amplitude is required for good sensitivity.
Tapson and Greene [4] also used PLL to keep an electro-mechanical device in an appropriate
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Fig. 2. Response amplitude of the flexible aluminium disk vs. frequency.
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Fig. 3. Measured amplitude of vibration (top) and levitation height (bottom) vs. frequency.
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operating mode, Tapson has also proposed a technique called admittance locking [5] which seems
attractive, but was proven only for, well-behaved systems. PLL and admittance locking both rely
on perfect linear behaviour of the systems that are to be driven by these algorithms. The presented
method tries to overcome the deficiencies of the previously proposed methods at the expense of
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slightly more sophisticated algorithm that necessitates a digital signal processor rather than
analog circuitry.
Mendel et al. [13,14] deal with recursive estimation algorithms implementation and analysis

that is a key component to the proposed algorithm. Recursive estimation algorithms are discussed
extensively in the literature and considered well understood.
The paper is structured as following: Sections 2 and 3 describe the problem and the proposed

resonance tracking approach detailing the identification and optimisation stages. In Section 3, a
detailed analysis of the influence of dither is presented. In Section 4 the properties of the proposed
method are studied via simulations and an experimental study. Section 5 concludes the paper with
a summary of the main points that were addressed.
2. Statement of the problem

The proposed method can be viewed as an optimisation problem where an unknown time-
varying system is sought to be driven at a large as possible amplitude of vibration. Although a
rather generic algorithm is presented, a particular physical system, namely a SFLD [2] is being
used to illustrate the physical and mathematical constraints. The SFLD seeks to maintain the
largest possible levitation level by injecting the energy at a frequency where the electromechanical
energy conversion is most effective.

2.1. Definition of the problem

The presented algorithm can be viewed as a variant of a resonance tracking algorithm, but here,
unlike other studies, an unknown model of the entire system is dealt with. As will be shown later,
the optimal operation of this device requires that the excitation frequency will be sufficiently close
to the resonance frequency of the system. Let o0ðtÞ denote the instantaneous optimal frequency
and let hðo; tÞ be the levitation height. The general problem can be formulated as

o0ðtÞ ¼ max
o
fhðo; tÞg (1)

subject to o0 � Dpopo0 þ D. (2)

Due to power efficiency considerations, it is expected that the bounds o0 � D defining the
region in which the system operates correctly will be quite narrow.
The levitation gap to be maximised is a function of the state vector, xðtÞ

hðo; tÞ ¼ f ðxðtÞÞ. (3)

The state-vector obeys a non-linear differential equation that is controlled by a function of the
excitation frequency and time �qðx;o; tÞ, but is also subject to slowly varying external disturbance
vector �dðtÞ. The state-vector evolves according to unknown differential equations of the form:

_x ¼ qðx;o; tÞ þ dðtÞ. (4)

The largest difficulty in solving Eqs. (1)–(2) stems from the fact that the variables in Eq. (4) are
unknown. In fact there is no prior knowledge about the exact functional dependence of h upon o.
Due to the severe restriction bounding the allowable frequency to within o0 � D, the amount of
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information that can be collected about hðo; tÞ is rather limited. Furthermore, upon convergence,
the excitation frequency is nearly fixed and therefore the ability to accommodate changes in the
system decreases considerably. This fact will be addressed in detail further on.
2.2. The relationship between excitation frequency and energy conversion efficiency

Consider a piezoelectric subsystem driving a mechanical vibrating system (see Fig. 1). It is
shown here that the (locally) minimal amount of instantaneous power, for a given amount of
mechanical work, is drawn from the driving power supply when the excitation frequency equals a
natural frequency. The immediate implication of this fact is that an optimal driving mode, in the
sense of energy and limited power utilisation, is achieved by a resonance tracking algorithm such
as the one proposed here.

uðtÞ, the steady-state response to a sinusoidal excitation gðtÞ ¼ Geiðot�bÞ (be it voltage or external
force), can be expressed as

uðtÞ ¼ Ueiðot�yÞ. (5)

The equations of motion in a matrix form can be rewritten in the so-called H-form [15] of the
combined piezoelectric and mechanical systems (in steady state):

ð�o2Muu þ ioCuu þHuuÞUeiðot�yÞ ¼ Geiðot�bÞ, (6)

where U ;G are the (real) response and force (voltage) amplitudes and y;b are phase angles. Here
Muu;Cuu;Huu are the mass, damping and stiffness matrices, respectively, where the stiffness
matrix capture both the mechanical and piezoelectric contributions [15]. It is assumed, that the
damping is light and can thus be considered proportional [16].
In order to find an expression for the efficiency, the definition of the mechanical power as [16,

pp. 107], is considered

PðtÞ ¼ PR � iPI ¼ _̄u
T
ðtÞgðtÞ, (7)

where PR;PI are the active and reactive power terms, respectively.
The proof is deferred to Appendix A showing that in the vicinity of the lth natural frequency

ðolÞ, the total power P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

R þ P2
I

q
, as a function of the excitation frequency o, of the system in

Eq. (6) becomes

P ¼
cT

l G
� �2
2zlol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ol � o
zlol

� �2
s

, (8)

where cl is the lth normal mode and zl is the relevant modal damping ratio.
It is clear from Eq. (8) that the total power (for a fixed amount of input power, i.e.

cT
l G ¼ const:) is minimised when ol ¼ o.
The maximal amount of power that can be delivered by a power source (e.g. high-voltage

amplifier in the piezo-ceramic case) limits the amount of power (or displacement) that can be
delivered to the controlled medium. Nearly no power is wasted in the form of circulating reactive
power when the excitation frequency matches exactly one of the natural frequencies. The efficient
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conversion of electrical to mechanical power maximises the level of levitation which is the goal in
this case.
3. The proposed algorithm

The proposed algorithm consists of two major stages, a model estimation stage and an
optimisation stage. The estimation stage is based on a recursive least squares (RLS) estimation
algorithm [13] and the optimisation stage is based on the line search minimisation algorithm [17].
A block diagram of the algorithm is given in Fig. 4. The objective of the optimisation stage is to
minimise some performance index, JðoÞ, which is related to the system’s dynamics. This
Initialization

Measure

Response

Estimate new

model

Check

Constraints

Find optimal

excitation

frequency

Add dither

Inject new

frequency

Add

Constraints

Fig. 4. Algorithm block diagram.
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performance index is derived from the instantaneously estimated model. With the current
performance index in hand, one can seek the excitation frequency under which the
best performance can be achieved, and apply it to the system. The physical limitations and
some safeguards add constraints to the search and while preventing the algorithm from diverging,
they increase the difficulty in both the identification and optimisation stages. These difficulties are
treated by analysing the physical, numerical and mathematical behaviour of every stage in the
algorithm and implementing some modifications. It is shown that without the proposed
modifications, the search for an optimal excitation frequency may fail completely.

3.1. The algorithm

Since the dynamical model of the system, as well as the external disturbance (Eq. (4)), are
unknown, a parametric model of the instantaneous levitation height, hðoÞ is chosen. This
parametric model is directly related to the amplitude of vibration in the vicinity of the desired
operation frequency. It is expected that the performance index, being directly related to the
frequency response function, would have an optimum at the resonance frequency of the complete
system. For sake of convenience, the optimisation stage is re-cast as a minimisation problem and
therefore the performance index is defined as

JðoÞ9� hðoÞ. (9)

For the SFLD, maximum levitation height would yield a local minimum of JðoÞ.

3.1.1. Modelling for identification

Optimisation methods often use a first- or second-order approximation of the performance
index, JðoÞ

JðoÞ � Jðo0Þ þ
qJðoÞ
qo

����
o¼o0

ðo� o0Þ þ
1

2

q2JðoÞ
qo2

����
o¼o0

ðo� o0Þ
2
þOðo3Þ. (10)

The difficulty with the current problem is that the performance index is known at a rather narrow
frequency range, therefore both ðqJðoÞ=qoÞ and ðq2JðoÞ=qo2Þ cannot be accurately and robustly
estimated.
Rather than estimating the first and second derivatives by differentiating the measured

instantaneous values of JðoÞ, a smoothed estimate of these quantities is generated.
The chosen method ties Jðo0Þ; ðqJðoÞ=qoÞ and ðq2JðoÞ=qo2Þ in a model that resembles the

Taylor series in Eq. (10), namely

JðoÞ ¼ a0 þ a1ðo� o0Þ þ a2ðo� o0Þ
2
þ a3ðo� o0Þ

3
þOððo� o0Þ

4
Þ. (11)

It is worth mentioning that a second-order model could be insufficient when the performance
index has some asymmetric behaviour and when the measured range is not small. As an
illustration (in Fig. 5) two models are fitted to a set of measurements. It is quite clear that the
extreme point appears at a different location for the second- and third-order models.
The parametric model proposed in Eq. (11), when fitted to a set of measurements, provides a

smoothed estimate to the measured response curve. On the other hand, numerical differentiation
of the measured data (as a means to realise Eq. (10)), would amplify the measurement noise
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considerably. For this very reason, the proposed approach uses a parametric model (polynomial)
that is fitted to the measured response prior to its differentiation. Once a model has been fitted, the
differentiation can be performed analytically thus providing a smooth expression for the
curvature.
In Fig. 3, the curves describing the amplitude of vibrations of the floating disk and levitation

gap ðh̄Þ vs. the excitation frequency are presented. It can be seen that both curves achieve their
maximum values nearly at the same frequency and therefore one can rely on any one of these
curves as the performance index. Still, the floating disk vibrations are considerably smaller than
the levitation gap and therefore the gap seems to provide a better signal-to-noise ratio. The curve
is modelled as a third-order polynomial, which is equivalent to Eq. (10)

h̄ðoÞ ffi p3o
3 þ p2o

2 þ p1oþ p0. (12)

Due to the different scale of the frequency (kHz range) and the levitation gap (mm range) some
numerical difficulties may arise when using such a polynomial. Therefore, the frequency domain is
scaled to be of Oð1Þ by using the following transformation

~o ¼
o� o0

S
, (13)

where o0;S are selected to attain appropriate mapping. The performance index was defined in Eq.
(9), therefore the performance index parametric model is defined as

JðoÞ9� h̄ðoÞ � a3 ~o3 þ a2 ~o2 þ a1 ~oþ a0. (14)
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The performance index now has a minimum point where the levitation is at its maximum. By
estimating a coefficient vector, a ¼ ½a3 a2 a1 a0�, with the levitation height measurements, an
approximation of the response curve is formed.
3.1.2. Calculating the optimal excitation frequency
Having identified the performance index the optimal excitation frequency consisting of the

minimum point can be extracted. Since the system is very sensitive to changes and the estimated
performance index has a finite accuracy, rapid frequency changes must be avoided. The
calculation of the new excitation frequency is done by applying a line search optimisation [17] in
two stages—the first stage determines the direction of the optimal frequency and in the second
stage the step size is computed.
A third-order polynomial Jð ~oÞmaymaterialise in one of two curve types: (i) a curve with an extreme

point or (ii) a curve with no extreme point (see Fig. 6). For type (i)-curve the minimum point is

oopt ¼ �2a2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
2 � 3a3a1

q� �
=6a3. (15)

Therefore, the optimal frequency step is Do ¼ oopt � ok. If the estimated performance index has no
minimum point (a possible case for third-order polynomial) the optimal direction is determined using
Newton’s step [17]:

Do ¼ � uþ
d2J

do2

� ��1
dJ

do
, (16)

where u is the Levenberg–Marquet addition [17] to avoid singularity.
Type (i)

 3rd order polynomial

Type (ii) 

 3rd order polynomial

Fig. 6. Possible types of third-order polynomials estimation of the performance index.
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In order to determine the step-size of the excitation frequency, two constraints are applied. The
first constraint is meant to prevent too big steps

ok � Bookþ1ook þ B, (17)

where B is an application specific parameter. The second constraint prevents too drastic changes
with respect to the identified performance index. This constraint is implemented using Armijo’s
rule [17], which adds damping to the line search and prevents large changes. The Armijo rule is
defined as

okþ1 ¼ ok þ lDo, (18)

where the parameter l; ðlp1Þ determines the actual step size. This parameter is calculated
from [17]

Ĵðok þ lDoÞ � ĴðokÞol
dĴ

do

�����
o¼ok

0
@

1
ADo. (19)

The new calculated frequency is injected to the system becoming the new excitation frequency.
3.1.3. Estimating the performance index
There is a variety of estimation algorithms able to extract a time-varying linear model in real

time from measured data. Some of the more acceptable methods are the least mean squares
(LMS) [18], recursive least squares (RLS) and the extended kalman filter (EKF) [13]. The chosen
estimator here is the RLS estimator which is fast and accurate enough for the purpose while being
sufficiently simple for a real time implementation. Moreover, RLS does not require any
assumptions regarding the dynamics of the model (as EKF does). RLS is based on the well-known
least squares (LS) method [13] that provides a smoothing effect.
In order to adapt the RLS to our system some definitions are in order. The parameter vector to

be estimated (the performance index coefficients Eq. (14)), is

a9½a3 a2 a1 a0�
T . (20)

It is assumed that each measurement conforms to the model

zk ¼ Jð ~okÞ þ vk, (21)

where vk is an added measurement noise. The observation matrix, H, can now be defined

hk ¼ ½ ~o
3
k ~o2

k ~ok 1�T ) H ¼

hT
1

..

.

hT
N

2
6664

3
7775. (22)

Here k—iteration time index and ~ok—the scaled frequency at time k.
The linear model in Eq. (21) can be rewritten for the kth iteration as

ẑk ¼ hT
k ak þ vk. (23)
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The RLS estimator is advanced (in covariance form) [13], by

âkþ1 ¼ ak þ Kkþ1ðzkþ1 � hT
kþ1akÞ, (24)

where the gain Kkþ1 is given as

Kkþ1 ¼ Pkhkþ1ðh
T
kþ1Phkþ1 þ w�1kþ1Þ

�1 (25)

and Pk is the covariance matrix, which is recursively computed by

Pkþ1 ¼ ðI � KkhT
k ÞPk. (26)

Note that wk is a weight that adds a fading memory effect to the algorithm. A common use of the
fading memory is to define a constant forgetting factor g ðgp1Þ and use [13]:

wk ¼ g�1. (27)

For a later analysis the recursive dependence of the information matrix, P�1, on the excitation
frequency via is shown

P�1kþ1 ¼ P�1k þ hkþ1wkþ1h
T
kþ1. (28)

Using Eqs. (24)–(26), a real-time estimation of the performance index model (Eq. (14)) is obtained
and the optimal excitation frequency can be extracted as described in Section 3.1.2.

3.1.4. Initialisation of the algorithm
The standard method of initialising a recursive estimator, such as RLS, is using zero initial

value for the estimation object [13]

a0 ¼ 0 (29)

and the initial covariance matrix is defined as a diagonal matrix

P0 ¼ bI , (30)

where b is some large value. A boot-strapping procedure is employed where the levitation height is
being measured in a small range of frequencies. These measurements can be used to compute an
initial vector of parameters a0, the initial frequency ~o0 and the initial covariance matrix P0 via a
batch LSs [13].
In order to assure that all parameters in âk have an equal sensitivity for changes in all directions

in the parameter space, a transformation Tn that yields a close to unity scaling, has to maintain

a0 ¼ Tn½1 1 1 1�T . (31)

This leads to the definition of the transformation—Tn ¼ diagða0Þ.
Now the observation matrix (Eq. (22)) becomes

Hk9 ~o3
k ~o2

k ~ok 1
� �

Tn (32)

and the newly obtained covariance matrix, becomes

P
ðscaledÞ
0 ¼ T�1n P0ðT

T
n Þ � 1. (33)

In this section the basic structure of the proposed algorithm was introduced. Although the
algorithm is composed of known and well-proven methods for the sub-tasks, some difficulties
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arise when the sub-tasks are combined to form a single algorithm. These difficulties are discussed
in the following section and some improvements are introduced to overcome them.

3.2. Algorithm difficulties and improvements

In the previous section the basic algorithm was introduced. As was expected, convergence to an
optimal excitation frequency in stationary cases is achieved, as can be seen in Fig. 7. When testing
the algorithm for non-stationary cases (see Fig. 8), it fails to track changes in the model. Indeed
Fig. 8 illustrates this failure which is caused by the confinement of the excitation frequency to a
relatively small region. Once the system achieves steady state, the excitation frequency remains
nearly fixed and no new information is added to the identification algorithm. This renders the
identification equations singular, leading to the wrong excitation frequency. In this section,
several modifications to the identification algorithm, that are crucial to its successful operation,
are described and analysed.

3.2.1. Analysing the effect of insufficient information
The influence of the restriction to a narrow frequency region can be analysed mathematically.

In the observation matrix, H, which is defined in Eq. (22), it can be observed that once no new
information is being added, it has identical columns and may thus loose rank. Indeed, examining
the off-line representation of the identification problem (see [13]):

â ¼ ðHT HÞ�1HT z (34)

it can be observed that the matrix HT H may become ill conditioned and cannot be inverted to
provide a meaningful estimate of the sought polynomial. When the observation matrix H looses
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its full rank, the identification system looses its identifiablity property [14]. A similar conclusion
can be obtained from the recursive definition of the information matrix (Eq. (28)), it can be seen
that the rank-one matrix ðhkwkhT

k Þ is being added to the previous information matrix in each
iteration. For constant frequency ~ok, the same rank 1 matrix (up to a scalar) is added and
therefore no new information is added. In other words, in this case information is added in a
single direction in the parameters space so eventually the information matrix looses its rank. Two
properties of the estimator are affected from this behaviour—the estimator’s information
(covariance) and the accumulated memory.
The information matrix P�1, defined as [13]

P�19HT H. (35)

It becomes singular due to the lack of information (when HT H looses its rank) and equivalently
the covariance matrix—Pk shows larger variance of the parameters.
The algorithm was enhanced using several techniques to overcome the lack of information and

memory saturation as described below.
3.2.1.1. Adding dither. In order to assist the algorithm to gain more from the measured
information, a small frequency dither, d, is added. The dither is a small random addition to the
excitation frequency causing slight fluctuations around the optimal frequency, increasing the
amount of measurement points. The added dither should be sufficiently large to achieve the
desired statistical performance; on the other hand, the dither should be sufficiently small to keep
the excitation frequency within the allowed bounds. The analysis presented below, relates the
dither level to the improvement in the identification process.
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3.2.1.2. Dither analysis. As statistically defined errors are dealt with here, the estimation error
boundaries as a function of the dither level need to be found. Assuming that the random
measurement noise has a Gaussian distribution with zero mean, i.e.

n�Nð0;s2nÞ. (36)

And the dither is also sampled from Gaussian distribution

d�Nð0; s2dÞ. (37)

For this analysis, the optimal excitation frequency is assumed to be a constant—o0 and the actual
excitation frequency becomes

ok ¼ o0 þ dk. (38)

The lower bound is calculated from the Cramer–Rao lower bound [13,14] that uses the Fisher
information matrix, MðaÞ, [13,14] to calculate the covariance, P̄, of the most efficient estimator:

P̄9Mða Þ�1. (39)

The lower bound is achieved by the best unbiased estimator. Therefore, the covariance of the
estimated vector a obeys

covðaÞXP̄. (40)

The effect of dither can be assessed via the Fisher information matrix since the addition of
dither affects the amount of information obtainable from the measurements.
The analysis is focused on two types of errors
(i)
 The deviation of the estimation from the exact solution

Z ¼ k a�aexactk, (41)

where it is proved later on that Z is bounded from below by

ZX
snffiffiffiffiffiffiffiffiffiffiffi
6Ns3d

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 18s2d þ 9o2

0 � 6o2
0s

2
d þ 9o4

0 þ 9s6d þ 9o2
0s

4
d þ 3o4

0s
2
d þ o6

0Þ

q
, (42)

here N is the number of measurements.

(ii)
 The second type of error is the variance of the performance index’s gradient, eg. The gradient

determines the direction in which the frequency is changed; hence it is important for the line
search stage. It is shown that this error has a lower bound, which is

egX
5

2N

sn
sd

� �2

. (43)
Proof. With the linear model defined in Eq. (23) and the above-mentioned assumptions, the

Fisher information matrix can be expressed as [14]

MðaÞ9
1

s2n
EfHT Hg. (44)
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Substituting the excitation frequency from Eq. (38) into the observation matrix’s definition (Eq.
(22)), the observation matrix can be expressed as

H ¼

ðo0 þ d1Þ
3
ðo0 þ d1Þ

2
ðo0 þ d1Þ 1

..

. ..
. ..

. ..
.

ðo0 þ dNÞ
3
ðo0 þ dNÞ

2
ðo0 þ dNÞ 1

2
664

3
775. (45)

It is easy to verify that without the dither this matrix has rank 1 as mentioned earlier. The matrix
HT H which affects the solution process is (see Eq. (34))

HT H ¼

PN
i¼1

ðo0 þ diÞ
6 PN

i¼1

ðo0 þ diÞ
5 PN

i¼1

ðo0 þ diÞ
4 PN

i¼1

ðo0 þ diÞ
3

PN
i¼1

ðo0 þ diÞ
5 PN

i¼1

ðo0 þ diÞ
4 PN

i¼1

ðo0 þ diÞ
3 PN

i¼1

ðo0 þ diÞ
2

PN
i¼1

ðo0 þ diÞ
4 PN

i¼1

ðo0 þ diÞ
3 PN

i¼1

ðo0 þ diÞ
2 PN

i¼1

ðo0 þ diÞ

PN
i¼1

ðoþ diÞ
3 PN

i¼1

ðoþ diÞ
2 PN

i¼1

ðoþ diÞ N

2
66666666666664

3
77777777777775

(46)

and it also has rank 1 when no dither is present. For sake of simplicity, the dither is redefined as a
relative amount of the frequency o0, i.e.

d9ao0, (47)

where

a�Nð0; s2aÞ. (48)

Substituting Eq. (47), in Eq. (46) and taking the expectation can apply the Cramer–Rao lower
bound (Eq. (39)), to obtain

P̄ ¼
s2n

6Ns6a

�

1

o6
0

�
3

o5
0

�3
s2a � 1

o4
0

3s2a � 1

o3
0

�3
1

o5
0

3
s2a þ 3

o4
0

3
s2a � 3

o3
0

�3
s4a þ 2s2a � 1

o2
0

�3
s2a � 1

o4
0

3
s2a � 3

o3
0

3
5s4a � 2s2a þ 3

o2
0

�3
3s4a � 2s2a þ 1

o0

3s2a � 1

o3
0

�3
s4a þ 2s2a � 1

o2
0

�3
3s4a � 2s2a þ 1

o0
9s6a þ 9s4a � 3s2a þ 1

2
6666666666666664

3
7777777777777775

. ð49Þ
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The estimation error Z can be calculated from a covariance matrix ðPÞ via

Z ¼ traceðPÞ. (50)

Applying Eq. (50) to Eq. (49) leading to the result given at Eq. (42).

The gradient of the performance index Jð ~oÞ (defined in Eq. (14)) can be calculated from

dJ

d ~o
¼ 3a3 ~o2 þ 2a2 ~oþ a19f T a , (51)

where f9½3 ~o2 2 ~o 1 0�T and a is defined in Eq. (20). The gradient’s variance is obtained by
computing

eg9f T Pf . (52)

Substituting Eq. (51) in Eq. (52) yields the gradient’s variance lower bound as given in Eq. (43).
Investigating the effect of dither using norm inequalities: Define � as the deviation from the exact

noise-free solution of the estimation problem (Section 3.1.3), denoted as ae (i.e. a ¼ ae þ �). The
upper bound for k�k2 is obtained by employing matrix perturbation theory [20,21], to give (as
proved below)

k�k2p
ffiffiffiffiffi
N
p

sn
sminðHÞ

, (53)

where sminðHÞ is the smallest singular value of H (including the dither).

Proof. The observation matrix, H, can be written as a sum of a base matrix and a matrix of
perturbations caused by the dither

H ¼ H0 þ E, (54)

where

H0 ¼

o3
0 o2

0 o0 1

..

. ..
. ..

. ..
.

o3
0 o2

0 o0 1

2
664

3
775, (55)

E ¼

3o2
0d1 þ 3o0d

2
1 þ d31 2o0d1 þ d21 d1 0

..

. ..
. ..

. ..
.

3o2
0dN þ 3o0d

2
N þ d3N 2o0dN þ d2N dN 0

2
6664

3
7775.

Assume ae is the exact solution of the system, Eq. (23) without measurement noise, becomes

ðH0 þ EÞae ¼ z, (56)

when measurement noise ðnÞ is present, the estimation error ð�Þ is added to yield

ðH0 þ EÞðae þ �Þ ¼ zþ n. (57)
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Subtracting Eq. (57) from Eq. (56) have

ðH0 þ EÞ� ¼ n. (58)

The LS solution of Eq. (58) is formed using the generalised inverse [13]

� ¼ ðH0 þ EÞþn. (59)

Looking at the norm of the estimation error and using the triangular inequality, it can be shown that

k�k ¼ kðH0 þ EÞþnkpkðH0 þ EÞþkknk. (60)

In addition it can be shown that (see [20,21]),

kðH0 þ EÞþk2 ¼ 1=sminðH
0 þ EÞ, (61)

where sminðH
0 þ EÞ is the minimal singular value of ðH0 þ EÞ. Using Eq. (61) and Eq. (59) and

making use of the fact that the measurement noise norm is

knk ¼
ffiffiffiffiffiffiffiffiffi
Nsn

p
(62)

the upper bound in Eq. (53) is obtained.

3.2.1.3. Effect of dither—discussion. Inspection of the dither bounds developed previously, adds
some insight on the dither effect. The lower bounds reflect the fact that increasing the dither or the
number of measurements, reduces (statistically) the error (see Eqs. (42), (43)). It was made clear
that the measurement noise did not contribute to the enriching of the estimation process. Despite
being a perturbation from the optimal value, the added dither does improve the conditioning of
the identification process. The estimation error’s lower bound (given in Eq. (42)) emphasises the
fact that without dither the error grows to infinity. In addition, the estimation error depends on
the frequency, o0, and on the dither level, sd, as a third-order polynomial (in accordance with the
performance index model). Moreover, the dependence of this error on the frequency emphasises
the importance of the frequency normalisation that was described in Section 3.1.1 and in Eq. (13).
Indeed, the estimation error decreases when the frequency, o0, approaches zero. This error is also
affected by the dither level, but in the opposite way, the bigger the dither level the smaller the error
becomes, as shown in Fig. 9.
It is important to examine the extreme values Eq. (42) can take. When sd51, Eq. (42) becomes

Z̄ ¼
snffiffiffiffiffiffiffi
6N
p

s3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9o2

0 þ 9o4
0 þ o6

0

q
. (63)

This expression reflects the fact that for a very small dither level, the sensitivity of the estimation
error to the dither is very high. On the other hand, when sd!1, Eq. (42) approaches
asymptotically to

lim
sd!1

Z̄ ¼
sn

ffiffiffiffiffiffiffi
9s6d

q
ffiffiffiffiffiffiffi
6N
p

s3d
¼

ffiffiffi
3

2

r
snffiffiffiffiffi
N
p . (64)

Eq. (64) reflects the fact that for a very large dither, the error does not depend on the dither level
anymore and in fact it exhibits a standard behaviour of a LS estimator in respect to the noise level
and number of measurements.
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Inspecting the gradient error’s lower bound (Eq. (43)), the term sd=sn can be viewed as a signal-
to-noise (S/N) ratio where the dither is playing the signal role. Simulations verify that the bounds
that were developed are indeed lower bounds as can be seen in Fig. 10. Although the lower bound
is not reached, the estimator tends toward it and the efficiency property of the LS estimator
guarantees it is reached when N !1. Plotting the analytical error-bound together with the
actual deviation shows that the upper bound is very conservative, as can be seen in Fig. 11. Still, it
does not violate the inequality in Eq. (53) proving its mathematical correctness.

3.2.2. Saturation of the algorithm

Since the standard fading memory approach (the wk in Eq. (25)) fails to achieve its goal when
insufficient information is obtained, the estimation process needs to be revived periodically. In this
work, have used the covariance resetting technique [19,22] that resets the covariance matrix at
fixed times to a pre-determined value:

Pk ¼ bP0. (65)

This reset forces the estimator to apply an equal weight in all directions by disregarding past data.
The resetting technique is applied in addition to the usual forgetting factor giving less weight to
older data, but does not reset the sensitivity in the parameter space.

3.3. Physical limitations

The algorithm is based on the assumption that the performance index is a concave function. In
some cases, usually following a rapid change in the system, the algorithm may erroneously
estimate a convex function—a solution that is not in the allowed parameter space. When this
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happens, the algorithm seeks in the wrong direction in the parameter space and may thus perform
inadequately. To prevent the algorithm form drifting in the wrong direction, a concavity
constraint is enforced to the estimator. The concavity constraint can be expressed mathematically
as: q2J=q ~o240 and for the third-order polynomial model (Eq. (14)) it becomes

2a2 þ 6a3 ~o40. (66)

Adding an inequality constraint to the estimator is a complex computational process [23], and for
real-time computations it may be unacceptable. In order to simplify the application of this
constraint it is transformed into an equality constraint:

2a2 þ 6a3 ~o ¼ R, (67)

where R ðR40Þ is the desired concavity. Eq. (67) can be added to the estimator as a dummy
measurement that forces it to consider this constraint every time the estimated concavity is below
a certain threshold.
4. Verification of the algorithm

In order to test the algorithm and to verify its ability to track the optimal excitation frequency, a
series of tests were conducted. The algorithm was tested in a generic manner using series of computer
simulations and a laboratory tests. The experimental squeeze-film levitation system is depicted in Fig. 1.

4.1. Simulation

In order to simulate the algorithm, a performance index was devised from a realistic simulation of
the squeeze-film. The RLS was employed with a forgetting factor of g ¼ 0:95 (see Eq. (27)) and as can
be seen in Fig. 7, the algorithm has kept its stability after converging to a fixed ‘optimal’ frequency.
In order to simulate slow variations in the optimal frequency, the performance index was

shifted periodically around its minimum point. When testing the algorithm ability to track the
optimal frequency, it seemed to have failed. Fig. 8 illustrates a typical behaviour of the basic
algorithm where after a reasonable start seems to eventually lock on some fixed frequency, loosing
its ability to track the changes. The failure to track the variations is attributed to the memory
saturation and to the lack of information.
To overcome the problems associated with tracking and lack of information, two modifications

have been suggested (as described in Section 3.2.2)—the covariance resetting technique and the
addition of dither. In Fig. 12 the result of the simulation with the enhanced algorithm are shown,
where the covariance is being reset every 50 iterations and dither �Nð0; 52Þ was added. The
algorithm now seems to track the changes with an improved accuracy, avoiding the memory
saturation problem (as can be seen in Fig. 12). The achieved tracking error appeared to be normally
distributed [24] with a mean bias of 0.37Hz (0.0007%) and a standard deviation of 7.2Hz (0.01%).
These errors should be considered while keeping in mind that the bandwidth of the system (the
frequency range between the �3 db points) is about 0.5% of the excitation frequency.
Through these simulations, the importance of the enhancements to the algorithm is

demonstrated. It can be seen that by adding very little dither (0.01%) to the input frequency,
the improvement in the performance is considerable.
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4.2. Experimental verification

In order to verify the algorithm’s capabilities, an experimental system was built. This section describes
in detail the physical system used for this verification and some results from this experiment are given.

4.2.1. The physical system—squeeze-film levitation system
The experimental system being used in this work can be distinguished by three main

components: the electro-mechanical actuator, a thin air film and the levitated disk. As illustrated
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in Fig. 1, the electro-mechanical actuator consists of a stack of piezoelectric disks (PZT-5A)
connected to a mechanical amplifier (steel exponential horn) and a thin aluminium disk which
serves as the driving surface and is connected to the tip of the horn. Relative normal oscillating
motion between two surfaces, with the presence of a compressible fluid (such as air) in between,
may generate a film (referred as a squeeze film) with a time average pressure higher than the
surrounding pressure. The squeeze film effect occurs, for standard air, when the oscillations are at
high frequencies (in the kilo-hertz range or more) with micrometre (or even submicrometre)
vibration amplitudes. Under these conditions, equilibrium is established through a balance
between viscous flow forces and compressibility forces. For detailed physical and mathematical
description of this system see Minikes and Bucher [2]. The squeeze film effect develops a levitation
force containing a constant component (the time average pressure) and a fluctuating part (at the
frequency of excitation) where both attain a maximum simultaneously (see Fig. 3). This non-linear
behaviour can be exploited to relate the average part in response (measured air-gap) and the
harmonic input voltage amplitude and frequency. A similar comparison can be made with the
system’s output at the frequency of excitation (Fig. 3). Indeed, simulations and experiments show
that at resonance, where the amplitude of vibration reaches its peak value, the mean gap attains a
peak as well (see Fig. 3). This fact allows us to use either the average gap or the disc vibration as a
measure for obtaining the highest levitation level as a function of the driving frequency. Some
difficulties are encountered when one tries to predict the resonance frequencies of the overall
system. The complex non-linear behaviour of the squeeze film and variations in the thermo-
dynamical properties of the fluid create effects that cannot be predicted in linear system terms.
Presuming that the system will resonate at the actuator’s natural frequency (as shown at Fig. 2),
could lead to severe inaccuracies as the levitated disk together with the squeeze film act as an
added mass and therefore shifting the resonances frequencies. In their work, Minikes and Bucher
[2] have revealed that the dynamical behaviour of the coupled squeeze film strongly depends on
the mechanical structure and has an alternating behaviour at different frequency regions.
4.2.2. Experiment
The experimental system can be seen in Fig. 13 and it was designed according to the description

in Section 4.2.1. Three optical sensors were added to serve as position indicators, measuring the
levitation height of the floating mass. Using this system, the algorithm was verified under realistic
conditions.
The experiment was carried out at a frequency close to an initially estimated resonance

frequency and was conducted under the following conditions: dither level of sd ¼ 5Hz,
covariance resetting every 50 iterations, the external voltage amplitude to the piezoelectric stack
was 140V (nominally).
During normal operation (see Fig. 14) the system seems to work as expected with steady level of

levitation of about 21mm with an excitation frequency of about 21.05 kHz. The frequency
fluctuations are around 20Hz mostly due to the dither and covariance resetting.
In order to test the algorithm’s performance under a rapid change in the system, a step change

in the external voltage amplitude was applied changing the amplitude from 120 to 180V after 350
iterations. Under this change, the resonance frequency is expected to change as both the
piezoelectric stack and the air-film are somewhat non-linear with respect to the amplitude.
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Initially the concavity constraint is not enforced and the effect of the change in the voltage
amplitude is depicted in Fig. 15.
A change in the estimated frequency has been observed, but the convergence into a new

amplitude level took around 150 iterations. The excitation frequency was increased, in this case,
by the algorithm from 21 to 21.15 kHz.
Implementing the concavity constraint within the algorithm emphasises the importance of this

constraint. Indeed, Fig. 16 demonstrates that the algorithm has become much faster and only
after a few iterations a new optimal frequency estimate was established. The levitation height that
was momentarily decreased has been regained after about 20 iterations.
To summarise the experimental study can state that the proposed algorithm seemed to fulfill its

goal. Indeed, tracking of a suitable excitation frequency was achieved under realistic conditions.
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5. Conclusion

A resonance tracking algorithm combining a parametric identification with a numerical search
for the optimal frequency of excitation was presented. The algorithm does not rely on linear
systems’ theory as it treats the measured response directly while curve-fitting in real-time a
smoothed reduced model. The importance in understanding the numerical and physical behaviour
was discussed and a feasible operating range was enforced to maintain levitation of the squeeze-
film system. It was shown that adding dither to the algorithm actually improves its performance
and a suitable analysis was presented showing how the dither can be chosen to achieve specified
statistical performance.
This kind of algorithm can make a squeeze film levitation system smarter and still having more

reliable performance. The proposed algorithm can also serve as a sensing mechanism detecting
changes in the natural frequency for diagnostic purposes or as a method to minimise energy
consumption while having as large as possible response levels.
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Appendix A

In this appendix, a proof for Eq. (8) is provided, showing that the (locally) optimal (in terms of
efficiency) excitation frequency is one of the natural frequencies.
Expanding the amplitude of the response in Eq. (5) in terms of the normal modes:

U ¼
XN

p¼1

apcp, (A.1)

where assume that

ð�o2
pMuu þHuuÞcp ¼ 0; p ¼ 1 . . . n (A.2)

can obtain an expression for the real coefficients representing the contribution of the lth mode, by
substituting Eq. (A.1) in Eq. (6):

al ¼
cT

l Geiðy�bÞ

o2
l � o2 þ i2ozlol

����
���� ¼ cT

l Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2

l � o2Þ
2
þ 4z2l o2o2

l

q . (A.3)

Using the definition of mechanical power in Eq. (7) and combining Eqs. (5), (6) with Eq. (A.2), the
power, P, becomes

P ¼ �ioUTeiðot�yÞð�o2Muu þ ioCuu þHuuÞUeiðot�yÞ (A.4)

or

P ¼ �ioUT ð�o2Muu þ ioCuu þHuuÞU . (A.5)

When operating in the vicinity of a natural frequency, the amplitude is dominated by the
corresponding eigenvector, hence choose U ¼ alcl ignoring the contribution of other modes.
Exploiting the well-known bi-orthonormality relations of eigenvectors [16, pp. 28–29], P can be

expressed as

P ¼ ioalalðo2
l � o2 þ iocT

p CuucqÞ

¼ � ioalalðo2
l � o2Þ þ alalo2cT

l Cuucl ðA:6Þ

or simplifying

P ¼ �ioalalðo2
l � o2Þ þ 2alalo2zlol. (A.7)

The complex power can be separated into active and reactive terms

PI ¼ oalalðo2
l � o2Þ; PR ¼ 2alalo2zlol. (A.8)

Defining the deviation of the excitation frequency from the natural frequency as Do ¼ ol � o,
one can obtain

PR

PI

¼
2zlool

ðo2
l � o2Þ

¼
2zlool

ðol � oÞðol þ oÞ
�

zlo
Do

. (A.9)
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Indeed substituting Eq. (A.3) in Eq. (A.8) results

PR ¼ cT
l G

cT
l G

2zlol

; PI ¼
cT

l G

2z2l o
2
l

cT
l GDo (A.10)

and the total power P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

R þ P2
I

q
in the vicinity of the natural frequency becomes

P ¼
ðcT

l GÞ2

2zlol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Do
zlol

� �2
s

. (A.11)
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