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Abstract

Lightly damped vibrating structures normally exhibit vibration patterns that are a combination of standing waves, i.e.

mode shapes. Traveling waves, on the other hand, occur only under special circumstances. In this work, the theoretical

conditions under which traveling waves prevail in finite structure are investigated. These conditions are highly sensitive to

the geometrical and material parameters of the structure and in particular the vibration pattern is sensitive to the boundary

conditions. There are several combinations under which traveling waves cannot be formed and these ill-posed cases are

analyzed in some detail. To overcome the unavoidable uncertainties in a model, a tuning process based on identification

and optimization of the excitation is suggested. The identification process uses a parametric algorithm to estimate the

wavenumbers of the measured vibrations. Then, the waves are decomposed into traveling and standing parts and the

external excitation is tuned until a pure traveling wave is formed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pure traveling vibration waves are usually observed on long or cyclically symmetric structures and seldom
on normal finite structures [1]. Discontinuous segments, where the structural impedance changes abruptly,
results in multiple reflection of waves that create a complex mixture of standing and traveling deformations.
In some applications it is desired to deliberately create traveling deformation waves. Most of these
applications use traveling waves to create propulsion, e.g. ultrasonic motors [2]; squeeze-film levitation and
transportation devices [3], where a traveling pressure wave carries a levitated object along the direction of
progression. In Robotics, snake-like structure that exhibits traveling waves create propulsion, steering and
maneuvering in a viscous fluid environment [4]. In all these applications, it is desired to eliminate the standing
waves while maintaining the traveling ones.

In a finite medium, the excited vibration waves are partially reflected upon hitting the boundaries. Thus,
standing waves arise and they dominate the structural vibrations. Wave reflections occur when the incoming
wave experiences an impedance change along its path [5]. A feedback control based approach, controlling the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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vibrating waves along a beam, was investigated by Pines and von Flotow [6], by Mei [7] and also by Gardonio
and Elliott [8]. Elliott and Billet [9] proposed a digital adaptive control method for flexural wave propagating
along a beam. Traveling waves occur also on axially moving string systems (Tan and Ying [10]). Feedback
control can eliminate these waves as presented by Chung and Tan [11]. Alternatively, several configurations
and excitation methods were reported to excite traveling waves in finite structures. A passive method,
matching the mechanical impedance of a vibrations absorber to the medium’s characteristic impedance is
described by Hull [12]. In this work, longitudinal traveling waves are crated in a bar and also proposed in
Ref. [2] by Kuribayashi et al. for ultrasonic linear motors. A different approach was proposed in Ref. [13] by
Loh and Ro, where two neighboring natural mode shapes are excited simultaneously by two forces at the same
frequency but phased in time to create a response imitating a slowly modulated traveling wave. Tanaka and
Kikushima [14] propose the active sink method where a pair of forces is applied at the boundaries while one
acts as a source and the other as a sink. In this approach, the structure appears to the progressing waves as if it
was infinite. The work presented by Minikes et al. [15] further develops this idea and adaptively tunes the
external forces to overcome discrepancies between the theoretical and actual models. The tuning procedure is
based on minimizing a scalar function describing the proportion of the traveling to standing waves in the
measured vibration. Minikes et al. also pointed out the fact that for certain wavelengths, the tuning process
fails to achieve pure traveling waves due to dynamical behavior of a redundant part of the structure. This
paper adds some understanding and theoretical results that help in the active tuning procedure. The present
work improves the wave identification method and thus improves the tuning process in the presence of
multiple traveling waves. Gabai and Bucher [16], presented the basic theory of generating traveling waves, by
applying forces at the boundaries. In Ref. [16], the main concepts are described both for one- and two-
dimensional structures and the basic methodology of the tuning algorithm is outlined. The present paper
advances the theory and the mathematical foundations of the making of traveling waves in vibrating
structures. In particular, the dynamics of non-simple boundary conditions and their effect on the ability to
generate perfect traveling waves are studied in detail both theoretically and experimentally.

The tuning process, that produces pure traveling waves, necessitates the identification of the vibrating wave
characteristics from measurements of the instantaneous structural vibrations. A parametric wave
identification and decomposition approach, based on fitting an ellipse to the measured vibrating response is
described in Ref. [17]. This method can deal with waves that are dominated by a single wavelength. In
Ref. [15], the ellipse tuning method is further developed showing how the wavelength can be extracted from
the measurements and an additional method based on the non-parametric Hilbert transform is proposed.
Other types of parametric methods that are based on the Prony method have been reported in Ref. [18], but
these methods are highly sensitive to noise and to the number of selected parameters.

In this work, a method that has been previously employed for the Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) is adopted. This method was developed in Refs. [19,20]. The
ESPRIT method is superior to other parametric methods that identify sinusoids embedded in noise, and it has
better statistical accuracy over the similar-in-concept Prony-like methods [20]. ESPRIT is mainly used for
frequency estimation of noisy sinusoids [21] and for Direction Of Arrival (DOA) estimation in radars [22]. In
this work, the ESPRIT is used to estimate the dominant spatial wavelengths of the vibrating structure.

The ESPRIT identification method adds the possibility to tune several traveling waves having several
wavelengths, simultaneously. In addition, the paper investigates the effect of imperfect modeling on the
required excitation to produce traveling waves and its influence on the tuning procedure. In this work, a rather
simple vibrating structure is considered—a taut vibrating string. A vibrating string keeps the mathematical
expressions concise while the spirit of the analysis applies to general, one-dimensional structures, like beams.
The focus is set on the traveling ingredient of the vibration and disregards non-progressive components
(i.e. evanescent waves) which do not affect the traveling phenomenon away from the edges. The tuning
procedure is completely independent of the physical model and it can handle complex vibrating structures
exactly in the same manner.

The structure of this paper is as follows: after the introduction, wave identification methods are described in
Section 2. In this part, several methods for wave characterization including the ESPRIT, are detailed. Later,
the theoretical background of the active boundary conditions under which traveling waves are formed is
outlined and various boundary models are analyzed. The effect of uncertainty in the parametric model of the
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structure on the forming of traveling wave is then studied. Section 4 discusses the traveling wave tuning
algorithm and finally, a series of experiments is shown and analyzed.

2. Waves identification—estimating waves parameters from measurements

The identification and separation of the vibrations in terms of waves is a key element when trying to
generate a traveling deformation. It is necessary to evaluate the existing composition of the structure’s
vibrations from measurements and decompose the traveling and standing waves portions of the response. The
process of wave identification involves the execution of tempo-spatial measurements from which the waves’
coefficients and wavelengths are extracted. In this section, wave decomposition and two parametric methods
for wave identification are briefly introduced.

2.1. Traveling and standing waves decomposition

Initially, a wave with a single wavelength is discussed. This type of response represents general steady state
vibrations of a 1D structure under a single excitation frequency, o:

uðx; tÞ ¼ UðxÞqðtÞ ¼ ½C1 e
�ikx þ C2 e

ikx� eiot (1)

where U(x) is the spatial amplitude distribution along x, and q(t) is its time variation. Eq. (1) describes the
vibration as two traveling waves, having the same wavelength, traveling in opposite directions along the
structure. C1, C2 are complex constants, representing the different amplitudes and phase shift of the two
traveling waves. The wavelength is defined as:

l ¼
2p
k

(2)

Eq. (1) can also be realized as a composition of a standing wave and a traveling wave having the same
wavelength [17]. It is possible to quantify the ratio between the traveling wave and the standing wave in this
form by a scalar measure, often referred to as the Standing Wave Ratio (SWR). This measure determines how
far is the vibration state, (according to its coefficients, C1, C2), from a pure traveling or standing wave. The
SWR is defined as [15,16]:

SWR ¼
jC1j þ jC2j

jjC1j � jC2jj
(3)

The SWR value becomes unity when the traveling wave prevails completely (either C1 ¼ 0 or C2 ¼ 0) and its
value reaches infinity for a pure standing wave (|C1| ¼ |C2|). By defining:

Cmin ¼ minfjC1j; jC2jg

Cmax ¼ maxfjC1j; jC2jg (4)

A different scalar function, with a similar interpretation, is introduced:

J ¼
Cmin

Cmax
(5)

The function J measures the ratio between the waves traveling in opposite directions that appear in Eq. (1).
The values of J lie between 0 and 1. For a pure standing wave, one obtains J ¼ 1 and for a pure traveling
wave—J ¼ 0. This behavior of the function J makes it preferable for the optimization stage that is described
below.

2.2. Fitting an ellipse to identify the wave coefficients from measurements

In Ref. [16], it is shown that the spatial amplitude of a single wavelength vibration (such as given in Eq. (1))
is:

UðxÞ ¼ ðReðC1Þ þ iImðC1ÞÞ e
�ikx þ ðReðC2Þ þ iImðC2ÞÞ e

ikx (6)
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This expression can be reordered with separate real and imaginary parts:

UðxÞ ¼ ½ðReðC1Þ þReðC2ÞÞ cosðkxÞ þ ðImðC1Þ � ImðC2ÞÞ sinðkxÞ�

þ i½ðImðC1Þ þ ImðC2ÞÞ cosðkxÞ þ ðReðC2Þ �ReðC1ÞÞ sinðkxÞ� (7)

Inspecting Eq. (7), it can be seen that it traces an ellipse in the complex plane [16,17]. This ellipse is
characterized by its two radii r1, r2 from which the SWR can be computed. Measuring several points along the
structure, it is possible to curve-fit an ellipse and to estimate its parameters. It was shown in Refs. [15–17] that
the curve fitting procedure could be accomplished without an a priori knowledge of the wavenumber k.
Having fitted the ellipse, it is later possible to estimate the wavenumber as shown in Ref. [15].

Inspecting Eq. (7), it is possible to see that when the vibrations describe a pure standing wave (e.g. C1 ¼ C2),
the ellipse degenerates into a straight line. On the other hand, when the wave is a pure traveling wave (e.g.
either C1 ¼ 0 or C2 ¼ 0), the ellipse becomes a pure circle. It is therefore possible to evaluate how the
measured vibration state is close to a pure progressive wave by an expression that signifies how far the fitted
ellipse from a pure circle is. This process can be carried out by defining a scalar value:

J ¼
jr1 � r2j

r1 þ r2
(8)

One can verify that the former definition of J is identical to the previously defined function given in Eq. (5),
but it is based on the estimated radii of the ellipse that can be extracted from the measured response.

In the case where additional wavelengths exist in the spatial vibration, the complex representation of the
spatial vibrations is composed of a sum of several ellipses which does no longer sum to a single ellipse. Curve
fitting a linear model, in this case is impossible without the prior knowledge of the involved wavelengths. The
ESPRIT algorithm overcomes this limitation, as described below.
2.3. Using ESPRIT to identify waves having several wavelengths

This section provides a brief introduction to the ESPRIT algorithm and its adaptation to spatial wave
identification. A detailed description of the basic algorithm can be found in Refs. [19,20]. The ESPRIT
algorithm was proposed to estimate the frequencies of a set of complex exponentials with added noise. This is
completely equivalent to finding traveling wave components of a spatial signal. A spatial response consisting
of N exponentials with different wavenumbers k1, y, kN and additive noise is described by:

yðxÞ ¼
XN

p¼1

ap e
ikpx þ eðxÞ (9)

where e(x) is a zero-mean white Gaussian noise with mean square value of s2. The spatial response is captured
by an array of m equally spaced sensors, located at x1, y, xm. The array is partitioned into two sub-arrays,
that are displaced in space with respect to each other. The first sub-array contains the sensors located at x1,y,
xm�1 while the second contains the sensors located at x2, y, xm. Based on the parametric model given in
Eq. (9), the transformation, T, from one sub-array readings into the other one is [20]:

T ¼

e�ik1

. .
.

e�ikN

2
664

3
775 (10)

This transformation performs a rotation in the complex plane or a shift in space. The ESPRIT seeks to
identify this transformation from which the wavenumbers can be evaluated.

Both signal and noise subspaces are spanned by the covariance matrix, R. Calculating the covariance matrix
of y(x) over m sensors [20]:

R ¼ E½ yðxÞ yHðxÞ � (11)
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and computing the singular value decomposition of R (SVD), one has:

R ¼ UDVH (12)

It is assumed that the N largest singular values belong to the signal space so it can be separated from the noise
space. The corresponding N columns of U span the signal space. The signal space is partitioned in the same
manner as the sensor array; let S1, S2 be the signal spaces from the m�1 foremost and latter sensors. Obviously,
both S1 and S2 span the same signal space, hence, there exists a transformation, u, between the two subspaces:

S1 ¼ uS2 (13)

It is shown that both u and T share the same eigenvalues [20]. Thus, knowing u enables one to calculate the
wavenumbers. It is possible to estimate this transformation by solving Eq. (13) (in the least squares (LS) sense)
by performing a pseudo inverse:

û ¼ S1S
þ
2 (14)

Having computed the transformation, the wavenumbers can be calculated via:

k ¼ � argðeigðûÞÞ (15)

The dimension of the signal space, N, (being the number of expected wavenumbers) is related to the number of
excitation frequencies (spectral lines). For each excitation frequency, it is anticipated to obtain, at least, a pair of
wavenumbers—a positive one and a negative one. When more wavenumbers are expected (due to non-linear
effects for example) N must be estimated separately.

Having estimated the wavenumbers, it is possible to calculate the waves’ coefficients a1,y, aN by employing
a LS type of estimation to Eq. (9):

yðx1Þ

..

.

yðxmÞ

2
664

3
775 ¼

eik1x1 � � � eikN x1

..

. ..
.

eik1xm � � � eikN xm

2
664

3
775

a1

..

.

aN

2
664

3
775 (16)

Being complex, the wave coefficients, a1, y, aN, represent the different wave amplitude and phase shifts.
Eq. (16) has a unique solution only when mXN, i.e. the number of sensors is greater or equal to the number of
identified waves. This is a basic requirement in the ESPRIT, otherwise it is not possible to separate between
the signal and noise spaces.

For each frequency of vibration, a term in the form of Eq. (1) is added to the signal’s parametric model; where one
should expect to obtain, from the ESPRIT, a pair of wavenumbers—7k. The ESPRIT algorithm can thus curve-fit
waves with multiple wavelengths and these waves can be decomposed into their traveling and standing parts.

3. Traveling waves in a one-dimensional structures

This section discusses the generation of traveling waves in a finite structure from a theoretical point of view.
The active sink method is presented and applied to a taut vibrating string. The necessary excitation forces to
obtain a pure traveling wave in the string are then calculated and the results are discussed. The influence of the
boundaries and, the uncertainties in the model on the traveling wave properties is examined. The analysis
shows that the theoretical calculations are not useful in practical structures for the purpose of creating pure
traveling waves.

3.1. Generating traveling waves in a string

Considering the string illustrated in Fig. 1, the properties and boundary conditions are outlined below. The
string has a length L, cross area section A, thickness h, and volume density r. The string experiences a tension
force T. Its boundaries are modeled by two masses mza, mzb and two springs kza, kzb where z ¼ 1 denote the
string’s left edge and z ¼ 2 denotes the right edge. The active sink method uses two active forces to generate
traveling waves along the string. One force acts as a source, pumping energy into the string, while the other is
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Fig. 1. Schematics of a string on flexible supports, excited by two forces applied at the edges.
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the sink, absorbing the incoming waves. The forces f1, f2 are applied at the string edges affecting its
boundaries. The string’s deflection is denoted u(x, t) and the point masses, m1b, m2b move according to two
additional generalized coordinates, y1, y2, respectively. The string’s equation of motion is described by the
one-dimensional wave equation [23]:

rA
q2u
qt2
� T

q2u

qx2
¼ 0 (17)

The boundary conditions that incorporate the external harmonic forces:

T
qu

qx

����
x¼0

¼ �f 1 e
iot þm1a

q2u
qt2

����
x¼0

þ k1aðujx¼0 � y1Þ

T
qu

qx

����
x¼L

¼ f 2 e
iot �m2a

q2u
qt2

����
x¼L

� k2aðujx¼L � y2Þ

m1b €y1 ¼ k1aðujx¼0 � y1Þ � k1by1

m2b €y2 ¼ k2aðujx¼L � y2Þ � k2by2 (18)

It proves useful to define some standard and normalized parameters. The wave velocity is defined as:

c ¼

ffiffiffiffiffiffiffi
T

rA

s
(19)

It is possible to choose a non-dimensional space ordinate x such that:

x ¼
x

L
(20)

and by defining:

o0 ¼
c

L
(21)
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A non-dimensional time, t, is introduced:

t ¼ o0t (22)

The vibrations are normalized by the string’s thickness h:

~u ¼
u

h

~yr ¼
yr

h
r ¼ 1; 2 (23)

It is now possible to rewrite Eqs. (17) and (18) in dimensionless equations:

q2 ~u
qt2
�

q2 ~u

qx2
¼ 0 (24)

The string’s non-dimensional boundary conditions can now be expressed as:

q ~u
qx

����
x¼0
¼ �F1 e

iOt þ m1a

q2 ~u
qt2

����
x¼0
þ a1að ~ujx¼0 � ~y1Þ

q ~u
qx

����
x¼1
¼ F 2 e

iOt � m2a

q2 ~u
qt2

����
x¼1
� a2að ~ujx¼1 � ~y2Þ

m1b
€~y1 ¼ a1að ~ujx¼0 � ~y1Þ � a1b ~y1

m2b
€~y2 ¼ a2að ~ujx¼1 � ~y2Þ � a2b ~y2 (25)

where the following non-dimensional parameters are defined:

arz ¼
krzL

T
; mrz ¼

mrz

rAL
; z ¼ a; b

F r ¼
f rL

Th
; r ¼ 1; 2

O ¼
oL

c
(26)

A general solution for the string’s vibrations under harmonic excitations is composed of two traveling waves,
having the same wavelength but that travel in opposite directions:

~uðx; tÞ ¼ ðC1 e
�ikx þ C2 e

ikxÞ eiOt (27)

where k is the non-dimensional wavenumber:

k ¼
o
c

L ¼
o
o0
¼ O, (28)

and the general non-dimensional solution for the vibrations of m1b, m2b is given by:

~y1 ¼ C3 e
iOt

~y2 ¼ C4 e
iOt (29)

By substituting Eqs. (27) and (29) into Eq. (25), a linear set of equations BC ¼ F can be formed:

B1 B2

B3 B4

" #
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

B

C1

C2

C3

C4

2
6664

3
7775

|fflfflffl{zfflfflffl}
C

¼

F 1

F 2

0

0

2
6664

3
7775

|fflfflffl{zfflfflffl}
F

(30)
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and:

B1 ¼
a1a � m1aO

2 þ ik a1a � m1aO
2 � ik

ða2a � m2aO
2 � ikÞ e�ik ða2a � m2aO

2 þ ikÞ eik

" #
; B2 ¼

�a1a 0

0 �a2a

" #

B3 ¼
�a1a �a1a

�a2a e
�ik �a2a e

ik

" #
; B4 ¼

ða1a þ a1bÞ � m1bO
2 0

0 ða2a þ a2bÞ � m2bO
2

" #
(31)

The response can be calculated from Eq. (30) only when det(B) 6¼0, i.e. the string is not at resonance. When the
string is excited at one of its natural frequencies, only a single mode is excited, this mode is a pure standing
wave. In the former case it is not possible, theoretically, to excite a traveling wave as all the injected power is
absorbed by one of the string’s natural modes.

By algebraic manipulation of Eq. (30), it is possible to calculate the forces F1, F2 that generate any desired
combination of the forward and backward traveling waves (i.e. imposing values for C1, C2):

F1

F2

" #
¼ ðB1 � B2B

�1
4 B3Þ

C1

C2

" #
(32)

Having found the necessary forces, the vibrations of the masses at the edges can also be calculated:

C3

C4

" #
¼ �B�14 B3

C1

C2

" #
(33)

Eqs. (32) and (33) are valid as long as B4 is nonsingular, i.e. as long as none of the boundaries experiences a
local resonance.

Specifically, when one seeks to generate a pure traveling wave (in the positive direction for example), with
amplitude C0, the wave coefficients are set to:

C1 ¼ C0

C2 ¼ 0 (34)

Substituting Eq. (34) into Eq. (32), the forces required to generate the desired traveling wave are:

F1

F2

" #
¼

ða1a � m1aO
2 þ ikÞ þ

a21a

a1a þ a1b � m1bO
2

ða2a � m2aO
2 � ikÞ e�ik �

a22a e
�ik

a2a þ a2b � m2bO
2

2
66664

3
77775C0. (35)

And the vibrations of the non-dimensional edge masses m1b, m2b (see Fig. 1), in the case of a traveling wave, become:

C3

C4

" #
¼

a1a

a1a þ a1b � m1bO
2

a2a e
�ik

a2a þ a2b � m2bO
2

2
6664

3
7775C0. (36)

Sometimes it is more convenient to set one of the forces as a reference force rather than imposing the traveling wave
amplitude. Setting F1 as a reference force, the wave amplitude, C0, may be calculated from Eq. (35):

C0 ¼ ða1a � m1aO
2 þ ikÞ þ

a21a

a1a þ a1b � m1bO
2

� ��1
F 1 (37)

It is now possible to use the second half of Eq. (35) with Eq. (37) and calculate the force ratio, F2/F1, needed to
generate a pure traveling wave:

FRATIO ¼
F 2

F 1
¼
½ða2a � m2aO

2 � ikÞ � ða22a=ða2a þ a2b � m2bO
2ÞÞ� e�ik

ða1a � m1aO
2 þ ikÞ þ ða21a=ða1a þ a1b � m1bO

2ÞÞ
(38)
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Eq. (38) describes the amplitude ratio, |FRATIO|, and a phase shift, ,FRATIO, between the two edge-forces, these
proportions generate a pure traveling wave in the positive direction of the string, as long as the system is modeled
accurately. The amplitude of the desired wave is given in Eq. (37). In reality, the result of Eq. (38) is not useful due to
the limitations in model accuracy. This is further elaborated next in Section 3.3.
3.2. The influence of boundary dynamics on the traveling wave solution

As reflected from the expressions given in Eqs. (35)–(38), the conditions under which a desired vibration
pattern is generated, and in particular a traveling wave pattern, depend on the string’s properties and on the
dynamical model of the boundary supports. The effects of the properties and boundary conditions on the
obtained traveling wave are analyzed in this section.

It proves convenient to study first the simplest case where the string is completely free:

a1a ¼ a1b ¼ a2a ¼ a2b ¼ 0

m1a ¼ m2a ¼ 0 (39)

In this case, the force ratio (from Eq. (38)) becomes:

FRATIO ¼ �e
�ik (40)

This ratio depends only on the properties of the string and it represents a pure phase shift between the two
forces. The phase shift is related to the time of flight of a disturbance from one edge of the string to the other.

Another interesting case is the case of symmetric boundaries (the right and left boundaries are identical):

a1a ¼ a2a9aa; a1b ¼ a2b9ab

m1a ¼ m2a9ma; m1b ¼ m2b9mb (41)

The force ratio for the symmetric boundary conditions (from Eq. (38)) is:

FRATIO ¼ e�ik
ðaa � maO

2Þðaa þ ab � mbO
2Þ � a2a � ikðaa þ ab � mbO

2Þ

ðaa � maO
2Þðaa þ ab � mbO

2Þ � a2a þ ikðaa þ ab � mbO
2Þ

(42)

It is possible to see that, in this case, |FRATIO| ¼ 1 and the phase lag depends on the mass, stiffness, and
geometrical parameters. This means that for a pure symmetric system, only the phase between the two forces
has to be set to obtain the desired traveling wave response.

In order to clarify the role of the boundary conditions, a simpler case is inspected. In this example, the force
F1 is applied at a free edge of the string and the force F2 is applied at an edge whose boundary consists of a
mass and two identical springs. The non-dimensional boundary parameters in this case are:

a1a ¼ a1b ¼ 0; m1a ¼ m2a ¼ 0

a2a ¼ a2b9a2; m2ba0 (43)

Eqs. (30) and (31) degenerate into:

ik �ik 0

ða2 � ikÞ e�ik ða2 þ ikÞ eik �a2
�a2 e�ik �a2 eik ð2a2 � m2bO

2Þ

2
64

3
75

C1

C2

C4

2
64

3
75 ¼ F 1

F 2

0

2
64

3
75 (44)

and the force ratio (from Eq. (38)) becomes:

FRATIO ¼ �e
�ik 1þ

ia2
k

a2 � m2bO
2

2a2 � m2bO
2

� �
(45)

It can be seen from Eq. (45) that the dynamics of the boundary have a considerable effect on the force ratio
that creates a pure traveling wave.
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Two special excitation frequency values are examined. The first excitation frequency of interest is:

O ¼
ffiffiffiffiffiffiffi
a2
m2b

r
(46)

For this frequency, the force ratio degenerates back to Eq. (40) of the free–free string and the amplitude of
vibration of the mass m2b is:

C4 ¼ C0 e
�ik (47)

The mass m2b vibrates at the same amplitude and in-phase with the string edge. Thus, the boundary dynamics
have no effect on the string dynamics.

The second frequency of excitation of interest is:

O ¼

ffiffiffiffiffiffiffi
2a2
m2b

s
(48)

In this frequency:

FRATIO !1

C4!1 (49)

This frequency is the natural frequency of the sub-system composed of the mass m2b with the two springs a2a,
a2b fixed at the upper side of a2a. This means that when the supporting system is at resonance (locally), it acts
as a dynamic mass-absorber and no finite amplitude of F2 can generate a sufficient amount of energy to create
a traveling wave having finite amplitude. All the energy injected by F1 goes to the vibration of the mass m2b

rather than to the string’s vibration. A realistic boundary would have an infinite number of (local) natural
frequencies and modes. When one of the boundary’s local modes is excited, the generation of a traveling wave
becomes a demanding task in terms of the power consumption.

It is also possible to verify that there is no real value of the excitation frequency, O, that renders the force
ratio zero. This is due to the fact that it is not possible to match the resistive characteristic impedance of the
string by using only energy conserving elements.
3.3. Sensitivity of the traveling wave conditions to modeling uncertainties

The model of the structure has limited accuracy and it contains some uncertainty in its parameters. In the
case of the string, uncertainties in the string’s tension, density and dimensions are expected. In addition, in the
current string model the damping effect is unaccounted for, while in reality some dissipation always exists.
Moreover the stiffness and masses at the boundary supports are a simplification of true supports and therefore
are imperfect. When applying the forces based on the theoretical model, it is unlikely that pure traveling waves
will be formed.

In order to assess the importance of each physical parameter, i.e. stiffness, mass, damping and frequency on
the ability to form traveling waves, these quantities are varied mathematically and the effect is examined.

The non-dimensional parameter k represents the string properties and the non-dimensional parameters a2,
m2b, reflect the boundary conditions. Let a nominal model having the nominal parameters k0, a02, m

0
2b and

let F 0
1, F0

2 be the forces that generate a pure traveling wave according to Eq. (45) (i.e. for a nominal model).
It is possible to investigate the response of a perturbed model of the string when applying the nominal
forces F0

1, F 0
2, by perturbing Eq. (44) and calculating the string’s response. Since the force ratio is a

complex value, it reflects an amplitude ratio and a phase shift between the two forces; the perturbation s
hould be done in both amplitudes and phases of the parameters. The meaning of imaginary perturbation
to a real parameter is interpreted as adding structural damping to the model. The perturbed string’s
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Fig. 2. The effect of perturbing the non-dimensional wavenumber, k, on the traveling wave as reflected by: (a) the value of J(dk, Zk); (b) the
value of SWR�1(dk, Zk).
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parameters are thus:

~k ¼ k0ð1þ dkÞ eiZk

~a2 ¼ a02ð1þ da2 Þ e
iZa2

~m2b ¼ m02bð1þ dm2b
Þ eiZm2b (50)

where dp, Zp are amplitude and phase perturbation in the parameter p, respectively. The degree of purity of the
resulting wave is obtained by calculating the wave coefficients, C1, C2, from Eq. (44):

C1

C2

C4

2
64

3
75 ¼

i ~k �i ~k 0

ð~a2 � i ~kÞ e�ik ð~a2 þ i ~kÞ eik �~a2
�~a2 e�i ~k �~a2 ei ~k ð2~a2 � ~m2bO

2Þ

2
64

3
75
�1

F 0
1

F 0
2

0

2
64

3
75 (51)

and evaluating the SWR and J functions for various excitation frequencies (O). In Figs. 2 and 3, a few sample
results are shown. The results are presented by the values of the J function—where 0 means a traveling wave
and 1 is obtained for a standing wave (see Eq. (5)) and by the values of the SWR�1 function—0 means a
standing wave and 1 is a traveling wave (see Eq. (3)).

In Fig. 2, the fluctuations of the values of the SWR�1 and J functions for perturbations of the string
properties are presented for a normalized wavelength l ¼ 0.3. It can be seen that for a small variation in the
parameter, the applied forces fails to generate the desired traveling wave. A region of a pure standing wave is
noted for small perturbations. For example, reducing the value of k to 95% of the nominal value renders the
structure response to a standing wave solution. Another interesting point, as can be seen in Fig. 2, is that two
regions where pure traveling waves exist are separated by a ‘‘valley’’ of standing waves. The difference between
the two regions is the direction the waves travel. This information is not shown in the SWR function. In
addition, it is evident that both SWR�1 and J functions hold the same information regarding the purity of
waves in the response.
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In Fig. 3(a), the fluctuations of the values of the J function for perturbations in the non-dimensional
boundary stiffness a2 are presented for l ¼ 0.3. Here, small changes in the stiffness cause only small changes in
the forces needed to generate a traveling wave. Repeating this analysis for l ¼ 0.07, a value very close to the
critical value of O �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2=m2b

p
(described in the previous section in Eq. (48)), is presented in Fig. 3(b). In this

case, the sensitivity of the response to the perturbation is considerably higher and a very small uncertainty in
the stiffness value or a little damping variation changes the traveling wave solution dramatically.
Alternatively, a small modification of the stiffness would correct a problematic system with which it is
difficult to generate traveling waves at a particular frequency. Similar results are obtained when perturbing the
boundary mass m2b.

The actual force ratio needed to excite a desired response in a structure cannot be computed from a
theoretical model or numerical model since small deviations can change the response significantly. The
difference between the truly required forces and the theoretical ones can be fairly large in certain cases when
the boundary plays an important role.

4. Tuning traveling waves in practice

As discussed in the previous section, it is not feasible to generate a pure traveling wave in a structure when
only its theoretical model is considered. An experiment driven tuning process is suggested here. The tuning
process is based on modifying the amplitude ratio and phase lag between the forces acting on the edges, and
evaluating the resulting wave state of the structure by performing spatial measurements. The ratio between the
forces is expressed as a complex value:

F2

F1
¼ Ar e

if (52)
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where Ar is an amplitude ratio and f is a phase lag. The ratio of standing to traveling waves, is affected by the
pair Ar,f, and it is given by the SWR and/or J functions (both described in Section 2). The parameters Ar,f
are iteratively modified by the tuning process, until a desired level of purity of the traveling wave is achieved.
The tuning process is described below in Section 4.2.
4.1. Mapping the phase and amplitude and their effect on traveling waves

As shown in Ref. [15], for a given excitation frequency, the function J can be mapped over the Ar,f domain.
Some observations regarding the map topology are discussed in Ref. [15] where it is noteworthy to mention
the smoothness of the map in the Ar,f domain, and also it is noticeable that the amplitude ratio and phase lag
are nearly decoupled.
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In Fig. 4, the maps for a string with symmetric boundaries (such as given in Eq. (41)) are shown
alongside with the maps of the same string with slightly non-symmetric boundaries. As expected, for a string
with symmetric boundary conditions, the force ratio is unity. While for different excitation frequencies only
the phase between the two actuators has to be changed to maintain traveling waves (Fig. 4(a) and (b)). A slight
deviation from the symmetric boundaries changes the map. Far from the critical excitation frequency
(Eq. (48)), the amplitude ratio and phase lag changes are minor (Fig. 4(c)) while in the vicinity of the critical
frequency the required change in the amplitude ratio is significant.

In Fig. 5, another set of maps is provided for comparison. The theoretical map for a string with free
boundaries (described in Eq. (39)) is shown in Fig. 5(a) and (b). Once again, the force’s amplitude ratio is unity
due to the symmetry. A map for a string with one free edge (described in Eq. (43)) is given in Fig. 5(c) and (d).
Here the forces’ amplitude ratio is far from unity due to the asymmetry of the boundaries.



ARTICLE IN PRESS
R. Gabai, I. Bucher / Journal of Sound and Vibration 319 (2009) 406–425420
The preceding analysis has demonstrated that a slight deviation from the model of boundary conditions can
yield a significant change in the required excitation amplitude that generates traveling waves. This emphasizes
the need for an experimental force tuning stage.
4.2. Tuning via optimization

The tuning of traveling waves is a dual stage process. Initially, the structure’s response is measured and
decomposed into the traveling and standing components. It is possible now to evaluate the current wave state
by calculating the value of the SWR and J (Eqs. (3) and (5)) of the measured response. Based on the estimated
SWR, the algorithm modifies the amplitude ratio and phase of the external forces in order to optimize
the value of the SWR/J functions toward a pure traveling wave state. The typically smooth topology of
J(f,Ar) makes it ideal as a target optimization function. By locating its minima, the force ratio generating the
pure traveling wave for the structure is obtained. When the desired pattern contains more than one
wavelength, an independent function Jl(f,Ar) exists for each wavelength, l. An augmented cost function can
be formulated:

Ja ¼
X

n

Jln
ðfn;ArnÞ (53)

Assuming that the measured response is a superposition of different excitation frequencies, the optimization
can be carried out in the same manner as with a single wavelength. Now, n sets of amplitude and phase ratios
are tuned simultaneously, in each iteration.
Voice coil Actuator

Steel String

springs

(a)

(c)(b)

Fig. 6. Picture of the experimental system: (a) full view of the system, (b) a magnification of the left boundary and (c) a magnification of

the voice-coil actuator.
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5. Experimental verification

This section describes the experimental system and the series of experiments that were carried out to verify
the one dimensional traveling waves generation and identification algorithm. The experimental system is
depicted in Fig. 6. The system consists of a taut steel string of length L ¼ 0.77m and a cross section of
A ¼ 6� 0.5mm2. The string is held by two adjustable springs (as shown in Fig. 6(b)). The excitation is realized
by means of two voice-coil actuators, applying perpendicular forces to the string edges, as shown in Fig. 6(c).
The voice-coils are powered by two current amplifiers that reduce the cross-coupling between the forces
produced by the actuators. Measurements were taken using a scanning laser vibrometer (PolytecTM) and all
the data acquisition and calculations were performed via Matlabs. The excitation was produced by a
dSPACEs system and measurements were collected by an Agilent E1433B multi-channel measurement
system. The system exhibits imperfect connections between the actuators and the string with some inherent
angular movement of the actuators that affects the string’s edge response. To avoid these affects, the string’s
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response was measured along the central region of the string (about 70% of its full length). The wave
identification and tuning were carried out based on this measured region only.

The string’s response to sinusoidal forces was measured at equally spaced points along the string. By curve
fitting a harmonic function to the laser’s measured signal at each point, the amplitude and relative phase are
calculated. The phase is computed relative to one of the actuators signals. The amplitudes and phases of every
point, along the string, form the spatial response of the string. This response is the input to the identification
stage where the ESPRIT algorithm estimates the wavenumbers followed by estimating the wave coefficients as
described in Section 2. According to the wave coefficients the cost function can be evaluated as an input to the
tuning stage.

5.1. Measuring the cost function

The map of the function J(f,Ar) for various excitation frequencies shows the feasibility of creating traveling
waves via minimization of J(f,Ar) for the experimental system. In Fig. 7, measured maps for several
excitation frequencies are shown. Several observations can be made from the experimentally obtained maps.
(i) The amplitude ratio is far from unity for all maps. This may suggest that the string and boundaries are not
symmetric although they are designed to be so. (ii) It can be seen that the amplitude ratio and phase are nearly
decoupled in practice. Thus, a local minimum can be achieved by varying only one of the parameters at a time
(i.e. amplitude change followed by tuning the phase). (iii) Fig. 7(a) shows the map related to the frequency of
76Hz. This map can be compared to the theoretical map calculated based on the system’s parameters and
100 200 300 400 500

0.5

1

1.5

2

2.5

3

3.5

frequency [Hz]

A
m

pl
itu

de
 [m

m
]

100 200 300 400 500

2

4

6

8

10

frequency [Hz]

A
m

pl
itu

de
 [m

m
]

(c)

Fig. 8. The measured frequency response: (a) the response measured on the edge spring, (b) the response measured on a point on the string

and (c) photograph of the measured locations.
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presented on Fig. 4(a). It is seen that the theoretical and experimental maps are far from being identical. The
minimum points that represent the optimal amplitude and phase for a traveling wave are located at different
locations on the maps. This further supports the conclusion from the previous section, stating that it is not
possible to rely on the theoretical model to determine the forces that generate pure traveling waves.
Nevertheless, a simple tuning phase achieves this goal in most cases.

5.2. Boundary effects

Fig. 7(d) shows the map for frequency of 353Hz. In this frequency, the system behavior is similar to the
behavior presented by the theoretical map on Fig. 4(d). It can be seen that the map has no minimum point
within the power limitations of the system. Thus, it is not possible to generate a pure traveling wave at this
frequency. Measuring the frequency response of the system on several points along the string and on the
boundaries can explain this behavior. In Fig. 8, the frequency response is shown for a point on the string and
for a point on the edge spring. It is evident that while the string’s response to 353Hz is rather weak, the edge
spring’s response, at this frequency, is quite high. This may suggest that a local natural frequency of the
boundary occurs at this frequency. This case was addressed earlier in Section 3, Eq. (48). Most of the energy
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Fig. 9. The string response when tuned to have two traveling waves with different wavelengths having the frequencies—76 and 95Hz.

(a) The measured spatial response at growing successive time instances t1�, t2��, t3y, t4.�. The decomposed string response from (a)

the decomposition shows that there are two pure traveling waves oscillating at (b) 76Hz wave and (c) 95Hz wave.
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which is injected at this frequency goes to the vibrations of the edge supports rather than to the string itself.
The lack of sufficient power and the fear from causing permanent damage prevents us from achieving traveling
waves.
5.3. Tuning multiple traveling waves using ESPRIT

Based on the maps for an excitation frequency of 76 and 96Hz, it is possible to tune a traveling wave
composed from a combination of the two frequencies, yielding a response containing two different
wavelengths. The combined response is expected to contain two couples of wavenumbers, (7k76,7k95) where
the sign indicates whether it progresses in the forward or backward direction. Once decomposed, each
wavelength represents the response for a single excitation frequency (76 and 95Hz, respectively). The cost
function is evaluated as shown in Eq. (53) and optimized to obtain a pure traveling wave in each frequency.
An initial guess for the different amplitude ratio and relative phase is formed based on the measured maps (see
Fig. 7). Thus, only minor adjustments are expected by the optimization to overcome the non-linear effects
between the two frequencies. In the presented experiment, the 76Hz wave (normalized wavelength l76 ¼ 0.45)
is traveling to the left (�x) direction, and the 95Hz wave (normalized wavelength of l95 ¼ 0.38) is traveling to
the right (+x) direction. A series of time instances of the measured spatial string response of the string (the
response of the 0.4m mid string section) for the two frequencies is shown in Fig. 9(a). An animation video of
this response is provided in Electronic Annex 1. The composed response, which contains two uncoupled
traveling waves, does not look like a traveling nor does it form a standing phenomenon. In Fig. 9(b) and (c),
the response is decomposed into the two different waves with the ESPRIT based algorithm (an animation
video is provided in Electronic Annex 2). It can be seen that each one of the separate waves is a pure traveling
wave having a different wavelength, phase and amplitude.
6. Conclusions

In this paper, an active tuning approach to generate traveling waves in finite structures was investigated.
Although in theory, it appears that a rather simple analytical expression for the external forces generates the
desired traveling wave, in practice, it was shown here that the slightest inaccuracy in the mathematical model
may render such an approach useless. It is therefore necessary to calibrate the external forces to fit the physical
structure and to choose appropriate excitation frequencies. If not chosen wisely, the structure’s dynamics can
divert energy to localized regions for specific wavelengths, thus making the tuning progress unsuccessful. The
tuning process presented in this paper is based on an on-line estimation of the waves from the measured
structure response. In this work, the ESPRIT algorithm was used for the estimation task. The ESPRIT is a
parametric algorithm with high resolution and with the ability to separate several waves from each other. This
paves the way to handle structural responses that are composed from several traveling waves and tune each
wave to travel independently. A series of experiments validating the results were carried out on a laboratory
string-like structure.
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