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Abstract
Damping in resonating MEMS mirrors has a profound effect on the
dynamical behavior. The validity of the existing theories is investigated in
this work by theoretical and experimental means. The squeeze-film model
with artificial viscosity and the molecular dynamics model are adapted for
the case of a torsion mirror under a wide range of vacuum levels. The
considered ambient pressure varies from atmospheric to a pressure under
which structural damping prevails. High resolution experiments have been
conducted on dedicated devices. Two independent experimental damping
extraction methods have been employed for substantiating the validity of the
measured parameters. Although the theoretical models agree favorably with
the experimental data, it appears they provide slightly different predictions
under different operating regimes.

1. Introduction

An electrostatic torsion mirror is characterized by a
planar micro-machined surface tilting harmonically in close
proximity to fixed electrodes in the substrate. Designed for
high electrostatic actuation efficiency, the gap between the
elements is about two to three orders of magnitude smaller
than the characteristic length of the mirror and is typically
only a few micrometers. In the presence of gas, engulfing
the microstructure, the damping effects are dominated by
the squeeze-film phenomenon which deteriorates the torsion
mirror performance in terms of sensitivity and resolution.
Operating in rarefied gas ambient reduces the energy losses
in the system, hence, increasing the quality factor of the
mechanical vibrating device.

Currently, there are two approaches for modeling the
damping mechanism of micro resonators in rare gas ambient.
One approach, presented by Veijola et al [1] and Li and
Hughes [2], suggests an ‘effective coefficient of viscosity’
in which an approximated viscosity coefficient depends on
the gas pressure via the Knudsen number of the system.
Solving the Reynolds equation which governs the squeeze-film
damping phenomenon and utilizing this empirical coefficient
in the solution allow the prediction of the damping effect

for different ambient pressures. The concept of equivalent
viscosity loses its physical meaning in rarefied environment
since the molecules’ collisions with each other are so rare that
the gas can no longer be considered as a continuum.

An alternative approach presented by Christian [3], Bao
et al [4] and Hutcherson and Ye [5] is based on free molecular
dynamic models developed for a plate vibrating in normal
direction to a nearby stationary wall. The model originally
derived by Christian [3] is based on momentum transfer rate
from the vibrating plate to the surrounding gas due to collisions
of molecules with the plate. His model does not incorporate the
effects caused by the presence of a nearby wall and the quality
factor is independent of the dimensions of the oscillating
surface. A more accurate model for predicating the quality
factor when the vibrating plate is not isolated was suggested
by Bao et al [4]. This model is based on energy transfer and
on the velocity change of gas molecules due to collision with
the vibrating surface. Bao et al [4] have shown that for an
oscillating plate near a wall, the quality factor obtained by the
energy transfer model is about one order of magnitude smaller
than that obtained by the Christian model. Hutcherson and
Ye [5] have further modified Bao’s model by removing the
assumption of constant particle velocity while a molecule is
traveling underneath the oscillating plate, thus reducing the
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underestimation of the energy transferred to the gas. This
modified model is implemented numerically, and therefore it
loses some of its appeal as an engineering design tool.

Recently, much interest in the dynamical behavior of a
micro-machined torsion mirror and the effect of damping has
risen due to its wide technological impact. Pan et al [6] have
solved a linearized Reynolds equation to obtain the damping
torque on a tilting mirror by means of Fourier and double
sine series. Although the obtained solutions include both
spring forces and viscous forces induced by the squeezed film,
only cases with small squeeze numbers (viscous forces, see
[11]) are valid. At high squeeze numbers, nonlinear effects
become significant, making the linearized Reynolds equation
rather inaccurate [7]. Pan et al [6] have investigated the
dynamical behavior of a tilting mirror in atmospheric pressure
only and verified the results experimentally. A numerical
damping model for a two-dimensional octagonal gimbaled
tilting mirror was introduced by Hao et al [8]. Their paper
begins by presenting an analytical solution for a 1D tilting
mirror obtained by solving a variant of the linearized Reynolds
equation, but apparently the provided expression is identically
zero and the suitability of the solution was not verified. A
different approach to reduce the damping force generated by
the squeeze film was introduced by Uchida et al [9] who have
fabricated deep grooves in the electrodes. The presence of
grooves reduces the damping moment but at the same time
decreases the electrostatic driving force.

In this paper, an analytical and experimental study on the
damping effects of a rectangular torsion mirror as a function of
the ambient pressure has been carried out. First, an analytical
expression for the squeeze-film damping coefficient in a tilting
mirror is derived. This solution is obtained by degenerating
the Reynolds equation into a Poisson’s equation, considering
viscous damping effects only. Next, the free molecular model
given by Bao et al [4] is utilized for the case of a mirror
exhibiting an angular motion. An experimental study on a
dedicated micro-resonator torsion mirror concludes the paper,
comparing and validating the agreements of the theoretical
models.

2. Squeeze-film model

A rectangular 1D oscillating torsion mirror is illustrated
schematically in figure 1. The mirror is assumed to be
perfectly rigid and tilts around the y axis by a small angle
θ � 1. The initial gap between the mirror and the substrate
is given by h0 � a. At ambient pressure, where the
Knudsen number is relatively small and the engulfing gas could
be considered as continuum flow, the dominating damping
mechanism is the squeeze film underneath the mirror. The
viscous forces in the layer reach equilibrium with the pressure
forces and the damping torque results forming the spatial
pressure distribution in the film.

The governing equation is the Reynolds equation
derived from Navier–Stokes equations with non-slip boundary
conditions. The nonlinear and isothermal Reynolds equation
in rectangular coordinates and in non-dimensional form is
given by Langlois [10]:
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Figure 1. Schematic layout of the torsion mirror actuator.

where the non-dimensional parameters are

P = p

p0
, H = h

h0
, X = x

a
,

Y = y

a
, τ = ωt, σ = 12µωa2

p0h
2
0

,

(2)

where p0 and µ represent the surrounding gas pressure and
the gas viscosity, respectively. The vibrating frequency of the
mirror is given by ω and the squeeze number σ is related to
the energetic level of the film. At low squeeze numbers, the
compressibility effects in the squeeze film are negligible and
the film acts as a dashpot, while at high squeeze numbers the
film behaves as a nonlinear spring, exhibiting little dissipation
[11, 12].

Assuming pressure release boundary conditions:

P(0, Y, τ ) = P(1, Y, τ ) = P(X, 0, τ ) = P(X, b/a, τ ) = 1.

(3)

Under small amplitudes of the mirror’s angular motion, the
pressure and the clearance could be represented by introducing
a small perturbation parameter such as

H = 1 + δH̃ , P = 1 + δP̃ . (4)

Substituting these forms into the Reynolds equation and
collecting only first-order terms result in a linearized Reynolds
equation:

∂2P̃

∂X2
+

∂2P̃

∂Y 2
= σ

(
∂P̃

∂τ
+

∂H̃

∂τ

)
(5)

and the appropriate boundary conditions according to
equation (3) are

P̃ (0, Y, τ ) = P̃ (1, Y, τ ) = P̃ (X, 0, τ ) = P̃ (X, b/a, τ ) = 0.

(6)

The thickness of the film under small harmonic motion could
be represented by

H = 1 +
a

h0

(
X − 1

2

)
� sin(τ ) for 0 � X � 1 (7)

hence

H̃ =
(

X − 1

2

)
sin(τ ) and δ = a�

h0
. (8)
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A small rotational motion of the mirror may suggest that
the pressure variation relative to the ambient pressure is
considerably smaller than the variations in the thickness of the
film relative to the average thickness, meaning that P̃ � H̃ .
Under such an assumption and since both the gap and the
pressure vary in time at the same frequency, it seems logical
to assume that ∂P̃ /∂τ � ∂H̃/∂τ , and equation (5) can be
degenerated into a Poisson equation of the form:

∂2P̃

∂X2
+

∂2P̃

∂Y 2
= σ

∂H̃

∂τ
= σ

(
X − 1

2

)
cos(τ ) = f (X, τ). (9)

The above equation holds for small squeeze numbers where
the flow could be considered incompressible and the film
behaves as a viscous damper. Moreover, when dealing with
large squeeze numbers, not only does the assumption made
for deriving equation (9) not hold, but also the linearized
Reynolds equation in equation (5) is no longer adequate. At
large squeeze numbers, the spring-like behavior of the film
is nonlinear and an additional levitation force is excreted
[11, 7], influencing the system dynamics. Pan et al [6] have
first found a solution for equation (5) and then neglected
from it the torque generated by the air spring effect, while
equation (9) actually neglects in the governing equation the
term related with the spring effect and restrains the pressure in
the film to be proportional to θ̇ only. In the practical sense, the
solution of equation (9) for any arbitrary function describing
the clearance f (X, Y, τ ) could be easily obtained compared
with that involved with equation (5). A convenient method
for solving equation (9) is by employing the Green function
technique in rectangular coordinates for which the solution for
the pressure fluctuations takes the form

P̃ (X, Y, τ ) =
∫ b/a

0

∫ 1

0
f (ξ, η, τ )G(X, Y, ξ, η) dξ dη, (10)

where the Green function for the Poisson equation is [13]

G(X, Y, ξ, η) = −4a

b

∞∑
n=1,2...
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m=1,2...

× sin(nπX) sin(nπξ) sin
(

mπa
b

Y
)

sin
(

mπa
b

η
)

(nπ)2 +
(

mπa
b

)2 . (11)

Substituting equation (11) into equation (10), integrating
respectively and simplifying the terms in the double series
summation, results in the expression for the pressure
distribution as a function of time and space:

P̃ (X, Y, τ ) = 8σ

π2
cos(τ )

∞∑
n=1,2...

∞∑
m=1,2...

1

2n(2m − 1)

× sin(2nπX) sin
(
(2m − 1)π a

b
Y

)
(2nπ)2 +

(
(2m − 1)π a

b

)2 . (12)

Justifying the assumption of neglecting the contribution of the
pressure fluctuation in time to the pressure spatial distribution
can be done by considering the following typical physical
dimensions of a micro torsion mirror in MKS units:

a = 500 × 10−6, b = 500 × 10−6, c = 30 × 10−6,

h0 = 20 × 10−6, p0 = 1 × 105, µ = 1.8 × 10−5,

ω = 2π × 15 000, � = 10−3 rad.

(13)

Under such conditions, the analytical results obtained by
equation (12) confirm that indeed Max(P̃ ) = 0.000 9343 is
significantly smaller than Max(H̃ ) = 0.5.

The torque acting on the mirror, excreted by the pressure
in the film, is

T =
∫ b/a

0

∫ 1

0
(P (X, Y, τ ) − 1)

(
X − 1

2

)
dX dY

=
∫ b/a

0

∫ 1

0
δP̃ (X, Y, τ )

(
X − 1

2

)
dX dY (14)

by defining

�nm =
∞∑

n=1,2...

∞∑
m=1,2...

1

(2n)2(2m − 1)2

× 1

(2nπ)2 +
(
(2m − 1)π a

b

)2 (15)

and the dimensional expression for the damping torque is
given as

MD = a3p0T = −192�ba5ωµ

π4h3
0

�nm cos(ωt). (16)

2.1. The equivalent damping coefficient

The equation of motion of a rigid tilting mirror can be described
by the one degree of freedom second-order linear differential
equation:

Iy
d2θ

dt2
+ D

dθ

dt
+ Kθ = ME + MD, (17)

where Iy,D and K are the mass moment of inertia,
the damping coefficient and the stiffness of the device,
respectively. The external actuation moment applied to the
system is designated by ME. Assuming a harmonic rotational
motion of the form θ = � sin(ωt), substituting it into
equation (17) and balancing the harmonic terms result in the
expression of the form Dθ̇ = MD. The damping coefficient
for a rectangular tilt mirror under the condition where the gas
can be considered as a continuous medium is therefore

D = 192ba5µ

π4h3
0

�nm. (18)

It appears that the damping coefficient is independent of
both the ambient pressure and the excitation frequency.
As indicated by Pan et al [6], the independence of the
damping coefficient on the excitation frequency enables
the use of superposition of the Fourier sine series terms.
The independence of the damping coefficient on the ambient
pressure requires, in rare air conditions, the utilization of
‘effective coefficient of viscosity’ to artificially create a
pressure dependence. Inspecting equation (49) in Pan et al
[6] reveals that as long as σ 2 � π2 (as in the present case),
neglecting σ 2 is permissible and the damping coefficient is
reduced identically to equation (18). For example, the squeeze
number obtained under the typical operating conditions given
in equation (13) is σ = 0.127. The damping ratio ζ is defined
as

ζ = D

2Iyωn
, Iy = ρsabc

(a2 + c2)

12
, (19)
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Figure 2. The converged values of the double series �nm as a
function of b/a.

where ωn is the natural frequency of the mirror first tilting
mode (ζ 2 � 1). Hence, the damping ratio is expressed by

ζ = 1152a4µ

π4h3
0ρsc(a2 + c2)ωn

�nm (20)

for cases where c � a, the damping ratio could be further
simplified and the quality factor takes the form

QSF = 1

2ζ
= h3

0ρscωnπ
4

2304a2µ�nm

. (21)

Figure 2 shows the converged values of the double series �nm

as a function of b/a. Clearly, the damping ratio decreases with
the decreases of the ratio b/a, since the effective squeezing
area is being reduced. For a square torsion mirror (a = b) the
double series summation converges to �nm = 5.886 × 10−3.

2.2. Effective coefficient of viscosity

The approach of using effective coefficient of viscosity
suggests that the squeeze-film equations remain effective
in rare air conditions. The dependence on the pressure
is implemented via an artificial viscosity coefficient as
approximated by Veijola et al [1]

µ = µ0

1 + 9.658Kn1.159
(22)

or alternatively, utilizing the empirical equation given by Li
and Hughes [2]:

µ = µ0

1 + 6.8636Kn0.9906 . (23)

The Knudsen number Kn determines the degree of rarefaction
and the validity of the continuum model. It is the ratio of the
free mean path of the gas molecules to the characteristic length
of the flow.

Kn = λ

Lc
= kBT√

2πd2
gasPLc

, (24)

where kB = 1.380 658 × 10−23 J K−1 is Boltzmann’s
constant, T is the temperature (K), Lc is the characteristic
length of the flow (in our case Lc = h0), dgas is the diameter
of the gas molecule (for nitrogen dgas = 3.8 × 10−10 m) and
P stands for the gas pressure in Pascal units.

3. Free molecules model

The molecular model proposed by Christian [3] derives the
damping force on an oscillating plate by calculating the
momentum transfer rate from the vibrating plate to the
surrounding air due to collisions of molecules with the plate.
But this model does not consider the effect of a nearby
wall; hence it is adequate for isolated vibrating plates. Bao
et al [4] presented a molecular model based on energy transfer
rather than momentum transfer. Bao has shown that for an
isolated vibrating plate, the quality factor obtained by both
approaches is identical. However, for an oscillating plate near
a wall, the quality factor obtained by the energy transfer model
is about one order of magnitude smaller than that obtained
by the Christian model. In deriving the energy transferred
from the vibrating plate to the molecules, Bao et al [4] have
assumed that the time required for a molecule to travel under
the plate is much shorter than the oscillation time period of the
plate. Therefore, the velocity gained or lost after each collision
remains the same during its travel time. Additionally, under
vibration amplitudes of the plate that are much smaller than
the mean gap, Bao et al [4] considered the gap to be constant
during the entire travel of a molecule. The expression for
quality factor provided by Bao et al [4] is

QFM = (2π)
3
2 ρscω

(
h0

L

) √
RT

Mm

1

p
, (25)

where R = 8.31 J K−1/mole is the ideal gas constant, Mm is the
gas molar mass (28.92 g/mole for air) and L is the peripheral
length of the plate (L = 2a + 2b for a rectangular plate). In
order to utilize Bao’s model, we chose to approximate the tilt
motion of the mirror as two halves of the mirror vibrating out
of phase normally to the wall with a vibration amplitude of
a�/4h0. This approximation holds since the rotational motion
is very small relative to the mean gap thickness.

The quality factor is defined as the ratio between the total
energy of the system (e.g., maximum kinetic energy of the
plate) and the averaged energy loss during the time the phase
angle moves one radian at resonant frequency, which gives
rise to Q = 2πE/�E. The average energy loss is obtained
by integrating the change in the gas molecules kinetic energy
leaving the area underneath the plate over one cycle in time.
Therefore, the time phase between the two vibrating halves of
the plate does not play a role over a time period, and the average
energy loss is equivalent to that of a full plate oscillating
normally to the wall at the same frequency. However, the
peripheral length of the two halves is larger than that of a full
plate and should be rectified accordingly. The assumption of
constant gap during the travel of the molecules under the plate
holds since the dimensionless vibration amplitude is small, i.e.
a�/4h0 � 1. Consequently, the approximated quality factor
for a torsion mirror in rare air using free molecule model
could be obtained by using equation (25) with the appropriate
peripheral length: L = 2a + 4b.

4. Experiments and comparison

In this section, the experimental measurements that were
performed on two dedicated micro-machined mirrors are
presented. The two mirrors are similar in dimensions but
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Figure 3. Upper view photograph of the torsion mirror.

have different gaps between the mirror and the electrodes thus
having different damping characteristics. A brief description
of the fabrication process of the micro device is followed
by the description of the experimental configuration and the
data analysis methods utilized for extracting the damping
coefficient. Then, experimental results are examined and
compared with the theoretical models

4.1. Fabrication process

The miniature resonating torsion mirror shown in figure 3 was
designed according to an established process, consisting of
a device die and a substrate die assembled together in a flip
chip process [14, 15]. A SOI wafer consisting of a 30 µm
device layer, a 350 µm handle layer and a 2 µm BOX layer
was micro-machined by the following four main steps: (1)
2000 Å thick gold pads were deposited on the device layer
for assembly purposes and served as electrical connections
to the mirror. (2) A DRIE process on the handle side was
used in order to free the mirror system from the handle layer
and to enable optical access to the mirror. (3) Etching of the
oxide layer is used to free the structure from the oxide layer.
(4) A DRIE process on the device side is used in order to free
the mirror system from the device layer thus completing its
mechanical release and enabling it to vibrate freely.

The fabrication of the substrate consisted of a deposition
of 2000 Å thick nickel–chrome–gold electrodes; this layer was
used both for the electrostatic actuation of the mirror and also
as a seed layer for the nickel electroplating, implemented in
order to create a highly conductive spacer. This spacer allowed
determining the gap between the electrodes and the mirror.
The dimensions of the mirror seen in figure 3 are 500 × 500 ×
30 µm3 and the dimensions of each torsion beam are 1195 ×
15 × 30 µm3. The blurry rectangular shape seen around the
mirror is the shade created by the handle layer. Figure 4 shows
a schematic cross section of a diced micro-machined system,
presenting the final configuration of the components.

In this work, the experiments were conducted on two
different mirrors, having similar dimensions in terms of surface
area and inertial moment, but having different gaps between
the mirror and the actuation electrodes. The nominal values
of the physical parameters of the two mirrors (referred to as
mirror 1 and mirror 2) are summarized in table 1. The
dimensions a and b are basically mask dependent so a ±1
µm is estimated and the mirror’s thickness c is the wafer’s
device thickness (see figure 4) with a ±1 µm manufacturing
tolerance error.

Handle layer

Device layer (mirror)

Chrome-gold 
electrode

BOX Layer

Gold pads

Nickel 
spacers 

Figure 4. Schematic cross section of a diced micro-machined
actuator.

Table 1. Physical parameters of the two mirrors.

Mirror 1 Mirror 2

a, b (µm) 500 ± 1 500 ± 1
z (µm) 58 ± 1 43 ± 1
c (µm) 30 ± 1 30 ± 1
fn (Hz) 13 092.56 ± 0.01 12 824.87 ± 0.01
�QSF 13% 30%
�QFM 4% 9%

A sensitivity analysis reveals, as one may expect, that
the damping coefficient value is dominated by the level of
the mirror proximity to the electrodes (h0). Once the micro-
resonator system was assembled, the distance between the
reflecting (upper) side of the mirror and the exposed surface of
the actuating electrodes was measured by optical means using
a microscope. Designating this dimension by z, the accuracy
of the optical measurement was approximately �z = ±1 µm.
Additionally, the thickness of the device layer imbedded in
the SOI wafer had a possible manufacturing tolerance error
of about �c = ±1 µm. Consequently, the gap clearance is
implicitly determined by h0 = z − c, and the uncertainty
in the quality factor due to the uncertainty in the above two
independent geometrical dimensions could be approximated
by

�Q =
√(

∂Q

∂c
�c

)2

+

(
∂Q

∂z
�z

)2

. (26)

The percentage of uncertainties in the quality factor calculated
according to the squeeze-film model (�QSF), based on
equation (21), and according to the free molecules model
(�QFM), based on equation (25), are summarized in table 1.
For a given tolerance in the systems’ geometrical dimensions,
the smaller the clearance between the mirror and the electrodes,
the higher the possible error in estimating the quality factor.

4.2. Experimental set-up and procedures

The experimental set-up consisted of a laser vibration and
displacement sensor, a multi-channel, 16-bit data-acquisition
system sampling at a rate of 200 kHz and a custom-made
vacuum chamber. Passing through an optical microscope and
a transparent window in the chamber, the measuring laser
beam is being reduced to a diameter of 5 µM. The laser beam
was located near the edge of the mirror far from the rotation
axis, thus attaining maximum sensitivity in the rotational mode
of motion. On each of the two electrodes implanted on the
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Figure 5. Experimental results of the damping ratio in mirror 1 as a
function of pressure: (circles) based on steady state, stepped-sine
measurements, (triangles) based on transient response.

substrate, an equal dc voltage with opposite potentials was
applied. The device layer, which the torsion mirror is part of,
was subjected to an ac voltage at the excitation frequency.

Two different methods for extracting the damping ratio
of the system from the experimental data were employed. In
one method, a sinusoidal excitation signal is injected to the
system and the steady-state response is curve fitted. This
process is repeated for a large number of discrete frequencies,
one at a time, and the amplitude and phase of the response
are recorded. Good accuracy and frequency resolution were
achieved with this method, as frequencies could be spaced
1 mHz apart in frequency ranges where the amplitude varies
sharply (i.e. resonance with high Q factor). To the measured
frequency response, a parametric transfer function of the form

H(s) = b2s
2 + b1s + b0

s2 + a1s + a0
(27)

was fitted according to Levi [16], where s = iω. Finding the
polynomial coefficients of the denominator yields the damping
coefficient.

The second method that was utilized is based on the decay
rate of a transient response using the Hilbert transform. In this
case, the mirror was excited by a square wave at low frequency
and the measured velocity, v(t), at each transient has the form

v(t) = A e−ζωnt sin
(√

1 − ζ 2ωnt + φ
)
, (28)

where ζ, ωn, φ,A are the damping ratio, natural frequency,
phase delay and amplitude, respectively. The measurements
of the mirrors’ transient displacement were triggered by
the upgoing part of the square wave and several response
measurements were synchronously averaged in the time
domain to remove the non-synchronous frequencies. The
envelope of the time-averaged response, A e−ζωnt , was then
extracted by utilizing the Hilbert transform [17], and the
damping ratio was computed by fitting a decaying exponential
to this curve. A more detailed explanation of the two damping
extraction methods together with samples of the experimental
data is provided in the appendix.

Figure 5 presents the damping ratio ζ of mirror 1 estimated
from the measured response as a function of vacuum level.

A small rotational amplitude was assured by not allowing
the maximal rotational amplitude to exceed 0.01 rad. The
circles on figure 5 designate the results obtained by the curve
fitting method and the triangles designate the results obtained
from the transient response. The good agreement between
the two different methods enhances the confidence in the
experimental results, and could serve as a reliable basis to
assess the theoretical models.

4.3. Experimental results

A series of measurements was conducted on the two
micro-machined torsion mirrors, manufactured in the same
fabrication process having similar dimensions and properties
but with different clearances between the mirror and the
electrodes, as detailed in table 1. The quality factors (Q)
extracted from the experimental data were compared with
the theoretical models outlined in the first two sections of
this work.

The quality factor based on the squeeze-film model was
obtained by substituting the equivalent viscosity given in
equation (22) and in equation (23) together with equation (24)
into the expression for the quality factor in equation (21).
The quality factor based on the free molecules model was
obtained directly from equation (25). Figure 6 presented
the experimental results (squares) plotted together with the
squeeze-film models based on the equivalent viscosity as
suggested by Veijola (dotted curves) and by Li and Hughes
(solid curves). The results obtained by the modified Bao’s
free molecule model are plotted as dashed lines in figure 6.

Keeping in mind the level of uncertainty described in
section 4.1, figure 6 indicates a relatively good agreement
between the theoretical models and the experimental results.
Among the three models, the least adequate model for
predicting the quality factor is the squeeze-film model based on
the equivalent viscosity suggested by Veijola (dotted curves),
which underestimates the gas damping at high vacuum levels.
As expected, the free molecules model is suitable only for
pressure regimes where the mean free path of the gas molecules
is of the same or higher order as the characteristic length of
the flow.

Examining the prediction obtained by Bao’s model reveals
that the agreement with the experimental results is better for
mirror 1, where the nominal clearance is 28 µm, while for
mirror 2, where the nominal clearance is smaller 13 µm, the
quality factors are overestimated. This could be related to the
assumption, made by Boa et al [4], of constant particle velocity
while traveling in the gap. The assumption of constant particle
velocity implies that the number of collisions is constant with
no distinction between molecules that increase their velocity
and molecules that decrease their velocity in each collision.
The modified model provided by Hutcherson and Ye [5]
does take into consideration that the number of collisions of
molecules which gain velocity at each collision is larger than
the number of collisions of molecules which lose velocity,
and by doing so, reduces the underestimation of the energy
gained by the gas molecules. As derived by Bao et al [4],
the number of collisions while a molecule travels underneath
the mirror is inversely proportional to the gap thickness
(equation (6) in Hutcherson and Ye [5]). Hence, the larger

1767



A Minikes et al

(a) 

 

10-2 100 102

102

103

104

Pressure (Torr)

(b) 

10-2 100 102

Pressure (Torr)

Q
ua

lit
y 

fa
ct

or
 Q

Q
ua

lit
y 

fa
ct

or
 Q

Li
Veijola
Bao
Exp

101

102

103

104 Li
Veijola
Bao
Exp

Figure 6. The experimental and theoretical results for the quality
factor versus pressure for: (a) mirror 1, (b) mirror 2.

the gap between the mirror and the electrodes, the smaller the
number of collisions, and consequently, the constant particle
velocity assumption becomes more reasonable.

At a certain vacuum level, the gas damping becomes
insignificant in comparison with other damping mechanisms
such as the structural damping which is independent of
the ambient pressure. Obviously, the damping models that
are dealt with in this work and are compared in figure 6
do not consider such damping mechanisms. However, the
experimental results may suggest that at vacuum levels higher
than 10−1 Torr, the gas damping in micro-machined actuators
is no longer the dominating damping mechanism and the
damping becomes independent of the ambient pressure.

5. Conclusions

A theoretical and experimental study of the damping of micro
torsion mirror in rarefied gas ambient has been performed.
It has been shown that for small squeeze numbers, as in
this case, the governing nonlinear Reynolds equation can be
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Figure A1. Measured frequency response of mirror 1, curve-fitted
amplitude (circles) and fitted transfer function (dash-line). Here the
ambient air pressure is 0.8 Torr and the damping ratio is
ζ = 0.2655 × 10−3.

reduced to a Poisson equation, neglecting the rate of pressure
fluctuations in time. Such a simplification allows obtaining
analytical solutions to arbitrary functions of the film thickness
in a straightforward manner (as long as the variations relative
to the mean thickness are small). It has been concluded
that the Bao’s free molecule model can be adapted for the
case of a torsion mirror by modifying the peripheral length
appropriately. The experimental results of the damping ratio
were obtained by utilizing two different methods, assuring the
validity of the results. Comparison of the theoretical models
with the experimental results has shown that the least suitable
model is the one based on the equivalent viscosity suggested by
Veijola et al [1]. The agreement of Bao’s free molecule model
with the measured data deteriorates as the clearance between
the mirror and the electrodes decreases, possibly due to the
inadequacy of the assumption of constant particle velocity. It
appears that at vacuum levels above 10−1 Torr, the gas damping
is no longer the dominating damping mechanism.

Appendix

This appendix provides a short explanation on the damping
extraction methods used in this work and presents samples
of the obtained measurements. For comparison’s sake, the
mirrors’ dynamic behavior under a specific ambient pressure
is analyzed by the two methods showing the quality of the
experimental measured data and the level of agreement with
the fitted models.

Figure A1 presents the frequency response of the torsion
mirror extracted from the mirrors’ steady-state response to
a sinusoidal excitation. Under the assumption of linear
behavior, at each excitation frequency, the vibration amplitude
amplification level (circles on figure A1) was obtained by
curve fitting the measured laser’s output signal with a harmonic
function at the given excitation frequency. The curve fitting
took into consideration possible offset or drift and was
done by means of the least-squares method. At rarified
ambient, the amplitude varies sharply near resonance (high
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Figure A2. Time-averaged measured transient response of the
torsion mirror (solid line) due to a square wave excitation at low
frequency (dashed line). Here the ambient air pressure is 1 millibar
and the damping ratio is ζ = 0.2553 × 10−3.

Q factor); therefore, in order to achieve good accuracy and
high frequency resolution, a signal generator able to space the
frequencies up to 1 mHz apart served as the input excitation.
In addition, a logarithmic stretching of the frequency range
was applied to depict a wide band of the frequency response
while keeping high clustering of samples close to resonance
(as seen in figure A1).

Having the measured frequency response, a parametric
continuous-time complex transfer function was fitted
according to the method suggested by Levi [16]. This method
converts magnitude and phase data into transfer functions in
the form of numerator and denominator polynomials. The
order of the polynomials, as seen in equation (27), was found
to be sufficient for fitting the data in this work (dash-line in
figure A1). Having the denominator polynomial coefficients
of the transfer function allows calculating the damping ratio.
In ambient air pressure of 0.8 Torr, the damping ratio of
mirror 1 derived from the measured data shown in figure A1
is ζ = 0.2655 × 10−3.

The second method that was utilized is based on curve
fitting the decay rate of a transient response. Figure A2
presents the time-transient response of the torsion mirror
(solid line) due to a square wave excitation at low frequency
(1 Hz). The measurements of the transient response were
triggered by the upgoing part of the square wave (dashed
line on figure A2) and several response measurements were
synchronously averaged in the time domain, removing non-
synchronous frequencies and producing a curve according to
equation (28). The envelope of the time-averaged response is
then extracted by utilizing the Hilbert transform [17].

The instantaneous amplitude of the complex analytic
signal determines the envelope of the real part. Creating an
analytic signal in which the real part is the measured transient
response and the imaginary part is the Hilbert transform
allows us to obtain the logarithmic decay envelope of the

transient response. This envelope is plotted in figure A2 and
is intentionally shifted up by 0.5 V for presentation purposes
only.

This method can provide an indication for the dependence
of damping on the amplitude of vibration. For a system having
a linear dynamic behavior, it is expected that on a logarithmic
scale the envelope should appear as a straight line, indicating
that the damping ratio does not depend on the vibration
amplitude and is therefore constant. As the Hilbert transform
is sensitive to noise, a curve was fitted only to data that belong
to the beginning of the transient response where the ratio of
noise to signal is relatively low. In ambient air pressure of
1 millibar (∼0.8 Torr) the damping ratio of mirror 1 derived
from the measured data shown in figure A2 is ζ = 0.2553 ×
10−3. This damping ratio differs by less than 4% from that
obtained by the steady-state response (ζ = 0.2655 × 10−3).
The good agreement between the two models gives high
confidence in the validity of the data analysis.
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